As the number of connected devices rises, new technology standards have developed to handle the growing IoT space. While smartphones use cellular networks for their data, many IoT devices (for example, a smart water meter) only need to transfer small amounts of data. Relying totally on cellular or satellite networks would be expensive and use too much battery power for most devices. Similarly, WiFi and Bluetooth networks are not always a good or cost-effective solution. Most IoT devices don’t need to be in constant contact with a cellular network, so a new type of network was needed, here LPWAN entered into the picture.
Many people compare LoRA and NB-IoT technologies as if they were battling it out for dominance in the IoT market. In reality, they are two branches in an emerging LPWAN ecosystem.
LPWAN stands for
Low-Power Wide Area Network, a wireless network designed to efficiently connect
smart devices across long distances, usually through a low bit rate. LPWANs are
ideal for IoT devices that don’t need to manage large amounts of data, or for
circumventing more expensive gateway technology. This can include smart meters,
consumer products, and sensors. The overall value of the LPWAN market is
expected to reach $25 billion within 4 years.
Many technology articles
compare LoRA and NB-IoT technologies as if they were battling it out for
dominance in the IoT market. In reality, these technologies are two branches
within an emerging technology ecosystem. Similar to WiFi and Bluetooth, they
will most likely to diverge into different niches, rather than directly compete
with each other. This article will dive deeper into the capabilities, costs,
longevity, maturity, and other differentiators of NB-IoT and LoRa-based
technology.
What are
LoRa and NB-IoT?
LoRa and NB-IoT both operate
within LPWAN technology. They are two major standards for low-power IoT
devices.
The LoRa Alliance developed LoRa in 2015 as a secure, energy-efficient IoT standard that makes it easy to onboard new devices. LoRaWAN is a low power wide area network (LPWAN), developed to connect the Internet of Things devices and sensors for mass deployment. LoRa is developed to provide IoT devices extended battery life in the range of several years at the same time a LoRa network has extended range and is cost-effective to deploy. LoRaWAN is an LPWAN specification intended for long-range communications from base stations with a maximum range of 15-30km.
NB-IoT is
an abbreviation for Narrow Band IoT,
a cellular standard developed by 3GPP. NB-IoT is not a standalone technology,
but a cellular standard that aims to standardize IoT devices to be
interoperable and more reliable. It can be implemented in a standalone or
in-band spectrum manner and does not require gateways, while each
LoRa device needs a gateway to function (which can affect total cost). NB-IoT
connects base stations directly with sensors.
Key
Differences
Both LoRa and NB-IoT standards
were developed to improve security, power efficiency, and interoperability for
IoT devices. Each features bidirectional communication (meaning the network can
send data to the IoT device, and the IoT device can send data back), and both
are designed to scale well, from a few devices to millions of devices.
Major differences between LoRa and NB-IoT standards:
At 32 mA peak current—one-fourth of NB-IoT’s consumption—LoRaWAN devices last longer, especially in applications with high refresh rates.
Power Consumption
Latency:
The most important
differentiator of LoRa and NB-IoT is their latency. Here’s a quick refresher on
network latency: networks and devices communicate with each other using data
packets. But these data packets don’t always get transferred immediately,
because it eats up battery power and network coverage. Latency is the time
delay in transferring data after making a transfer request. A low latency
device “checks in” with the network more often than a high latency device.
For instance, a smart sensor
detects that a pipe has broken and needs to send an alert to the network. If
this sensor is high latency, it doesn’t transfer data to the network very
often, and it might be a few hours before the network receives the alert. If
the sensor is low latency, the network will receive the alert much sooner.
Location / Density:
Because LoRa devices use
gateways, they work well in remote or rural areas without 4G coverage. They use
unlicensed spectrum to communicate with the network. They also work well when
they are in motion (for instance, on a truck, plane, or ship). This makes them
well suited for supply chain and transportation applications. LoRa’s
geolocation is non-GPS, so devices offer location services without heavy
battery usage.
NB-IoT devices don’t need a gateway, and they rely on 4G coverage, either using spectrum within LTE, GSM spectrum or “standalone,” which refers to unused frequency within LTE guard bands. This means that devices with NB-IoT chipsets perform better in indoor applications and dense urban areas. NB-IoT uses GPS technology for geolocation.
Power Usage & QoS:
While NB-IoT and LoRa are both
designed for low-power devices, NB-IoT’s lower latency means that it uses
battery juice faster than LoRa. The trade-off is that it can guarantee a better
quality of service (QoS) than LoRa due to faster response times. NB-IoT also
boasts much higher data rates than LoRa.
LoRaWAN Frequency Bands
LoRaWAN operates in the sub-gigahertz frequency bands and it’s specification varies from region to region because of the regulatory requirement.
What are the best uses of this technology?
Depending on the needs of an
application, one technology may be more suitable than another. For most
applications, the biggest considerations are latency, battery life, coverage,
and cost. In this capacity, NB-IoT and LoRa serve different purposes.
Smart metering:
Most
meters process only small amounts of data each day, so LoRa is
best for most applications, assuming that the cost of installing a gateway is
not prohibitive. NB-IoT is a good choice for applications that
need more frequent communication or high data throughput.
Manufacturing:
Industrial
automation takes many forms, and there is no one answer for this space. NB-IoT is
a better choice for manufacturing applications that need more frequent
communication and guaranteed QoS, while LoRa is a
better choice for lower-cost sensors and longer battery life. Both are useful
in different environments.
Retail & POS:
NB-IoT is
a better choice. Retail transactions involve less predictable data and surges
of customers, so the low latency of NB-IoT is not a good fit. Retailers risk
losing sales (and customers) with the long latency time of LoRa applications.
Supply chain tracking:
The
clear winner for supply chain and transportation applications is LoRa,
because its mobile gateways perform reliably on a moving vehicle. Since
shipments in transit or in storage don’t need to transfer much data, LoRa’s
higher latency, lower data rates, and longer battery life all make sense. LoRa
is also better suited for coverage in rural warehouse areas.
Smart city/buildings:
LoRa is
the better choice for most smart buildings, due to easier placement of
gateways. However, buildings have their own electricity supplies and therefore
have less of a need for LoRa’s battery efficiency, so NB-IoT may
be a better option for smart buildings with very high data throughput or a need
for very low latency, such as high-security facilities. NB-IoT is also likely
better for smart city networks that connect dozens or hundreds of buildings,
whereas LoRa is better for a single-building application.
Agriculture:
Spotty cellular network coverage in rural areas makes LoRa the obvious choice since LoRa doesn’t require 4G. LoRa works particularly well to track agricultural indicators, such as water usage, soil pH, and temperature gauges, which don’t shift rapidly or need immediate responses. Not only that, but LoRa’s lower price point is also a top-selling point for farmers.
How
mature is the technology?
LoRa had an early two-year lead, and highly integrated LoRa modules are already available on the market for a competitive price, with more options already in development. LoRa is already considered the IoT network industry standard for several countries, including the United States. NB-IoT options are new but are already gaining traction in industry spaces that aren’t a good fit for LoRa. Technology as a whole is expected to mature quickly due to the enormous market demand.
Summary
While both NB-IoT and LoRa are low-power wide-area network technologies designed for low-power devices, they serve different commercial and technical requirements and are used exclusively for different applications. While the Narrowband IoT uses licensed bands that are less than 1 GHz, LoRa works with an unlicensed spectrum below 1 GHz which procures no cost for the applications using it. NB-IoT can be deployed within existing LTE bands, leveraging the spectrum between two “standard” adjacent LTE frequency carriers. Also, it can be used standalone, providing an easy migration path for the GSM/GPRS/EDGE spectrum. The higher-level applications which really need the assurance of QoS, go for NB-IoT, while the low-end business solutions prefer LoRa.
Most teams across IT organizations need access to virtual machines (VM), or Elastic Compute Cloud (EC2), for various developmental activities in the AWS ecosystem. Providing Secure Shell (SSH) access with well-defined security policies and roles Read more…
We at Ambee are always dealing with large chunks of data ( ~4TB / day ). Now that’s huge. You obviously can’t handle it using pandas ( or can you? ) Here is where the Read more…
Idea in brief: To make mobility efficient, sustainable, and environmentally-friendly, the automobile sector is exploring various technology-based solutions. Smart infrastructure, mobility-as-a-service, and IoT-based technologies are some of the most popular solutions taking over the transportation Read more…