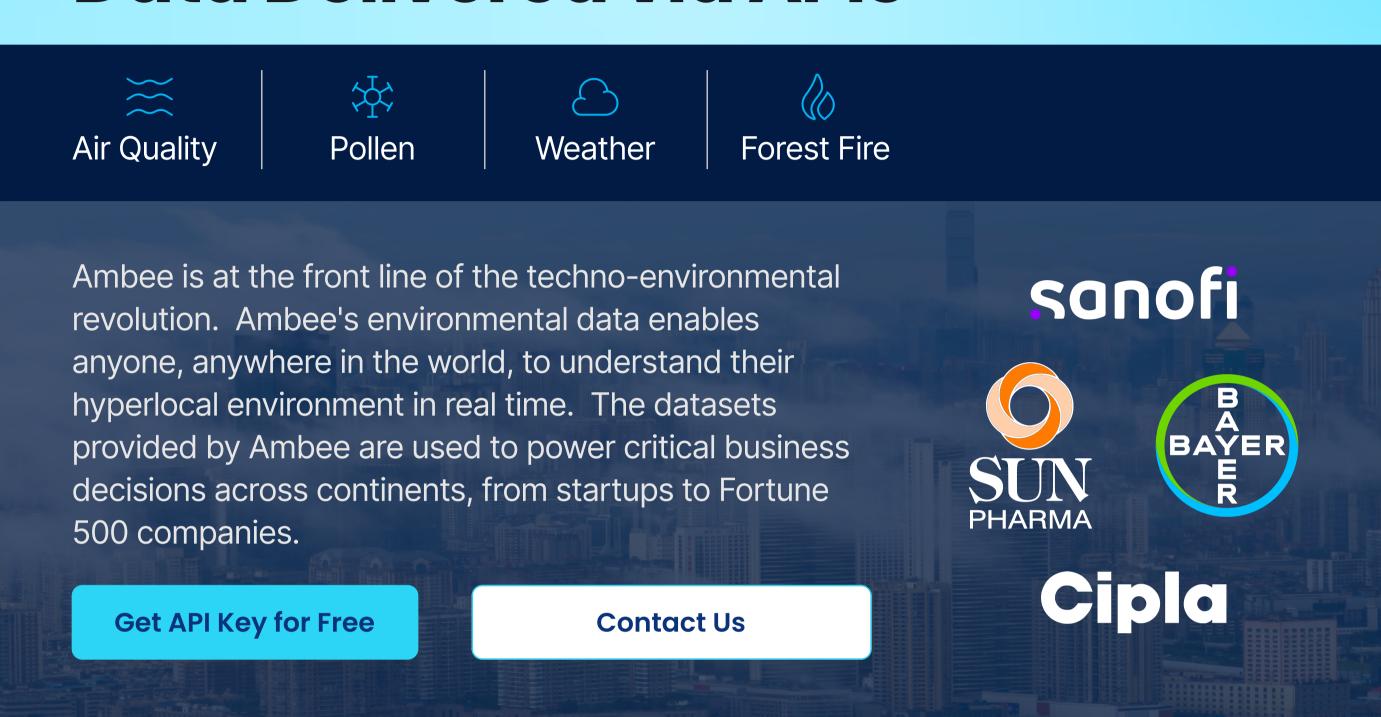
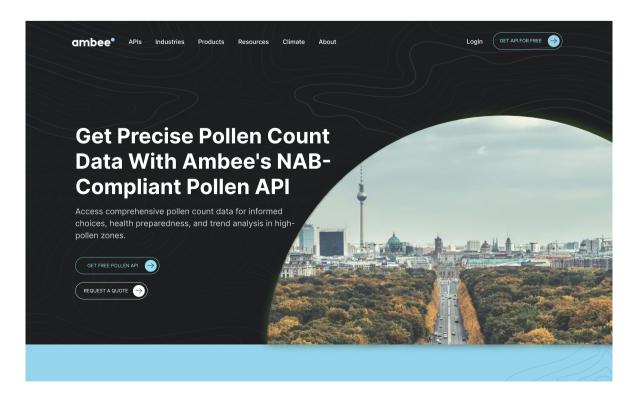
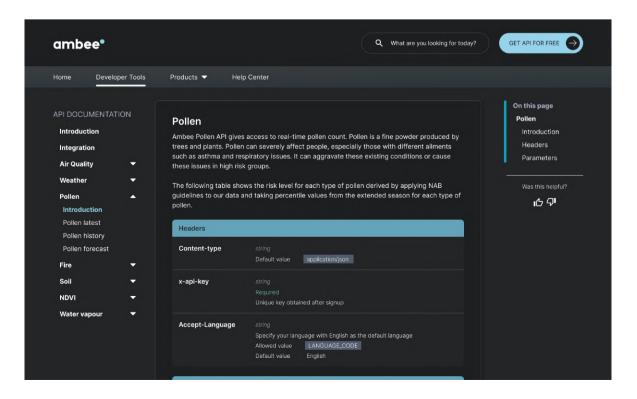
ambee

Pollen Data Accuracy Report


Insights into Ambee's forecast model benchmarked against Industry Standards


About Ambee | Hyperlocal Climate & Environmental Intelligence

We Build Accurate Environmental Data Delivered via APIs


Pollen Data

Pollen data refers to a collection of information and measurements related to pollen, encompassing pollen types, counts, index and forecasts.

Pollen API

Ambee's pollen API provides precise and up-to-date pollen data, facilitating seamless integration and utilization within applications or systems.

Know more about Pollen API

API documentation

Functions

Customization Options: Tailor data queries with filters like pollen type, location, and timeframe, enhancing the API's adaptability.

Real-time and historical data:

Comprehensive insights on pollen types, counts, indexes, & forecasts tailored to your chosen location.

Visualizations: Easily interpret pollen levels through diverse visual formats, such as heatmaps, providing clear geographical insights.

Health Recommendations: Receive personalized insights based on pollen data to aid informed decisions regarding allergies.

Applications

Monitor Pollen Levels: Keep allergy sufferers informed about local pollen counts for improved activity planning.

Manage Allergies: Provide real-time recommendations on medication, air purification, and strategies based on current pollen levels.

Informed Business Decisions:

Enable businesses to customize marketing, adjust product offerings, and plan events with insights from seasonal pollen trends.

Public Health Enhancement:

Enable health agencies to issue allergy alerts and offer guidance on AQ management strategies using pollen data.

Ambee's Pollen Data

Ambee's pollen data provides detailed insights into the local pollen landscape, offering information on pollen counts, associated allergy risks, and even identifying specific subspecies.

Pollen Data Suite Overview

Parameters	Description
Risk levels	High, Medium, and Low
Granularity	5 sq km; has the ability to go more granular
Real-time	Updated hourly
Forecast	Up to 120 hours
Historical	Up to 10 years of historical data (daily, hourly) with the last 48 hours available on APIs
Input Format	Latitude, longitude, country code, division, zip code, placename, state, city
Data Format Supported	JSON

Pollen Types Coverage

Tree

Grass

Weed

Pollen Regional Species Coverage

Tree Oak, Cypress/Juniper/Cedar, Mulberry, Pine, Elm, Ash, Birch, Maple, Poplar Weed Ragweed Grass Grass

Europe	
Tree	Hazel, Elm, Pine, Alder, Poplar / Cottonwood, Oak, Plane, Birch, Cypress
Weed	Mugwort, Chenopod, Ragweed, Nettle
Grass	Grass

Queensland and Northern Australian Territory				
Tree	Casuarina, Acacia, Myrtaceae, Cypress, Pine			
Weed	Chenopod, Sedges, Aster, Plantago			
Grass	Grass			

Rest of Australia and New Zealand			
Tree	Casuarina, Acacia, Myrtaceae, Cypress, Pine, Elm, Willow, Oak, Olive, Alder, Birch		
Weed	Chenopod, Sedges, Aster, Plantago, Rumex		
Grass	Grass		

Pollen Data Use Cases

Optimize product strategies: Streamline workflows, meet the demands for anti-allergy products, and improve sales forecasts by leveraging real-time, historical, and forecasted pollen data.

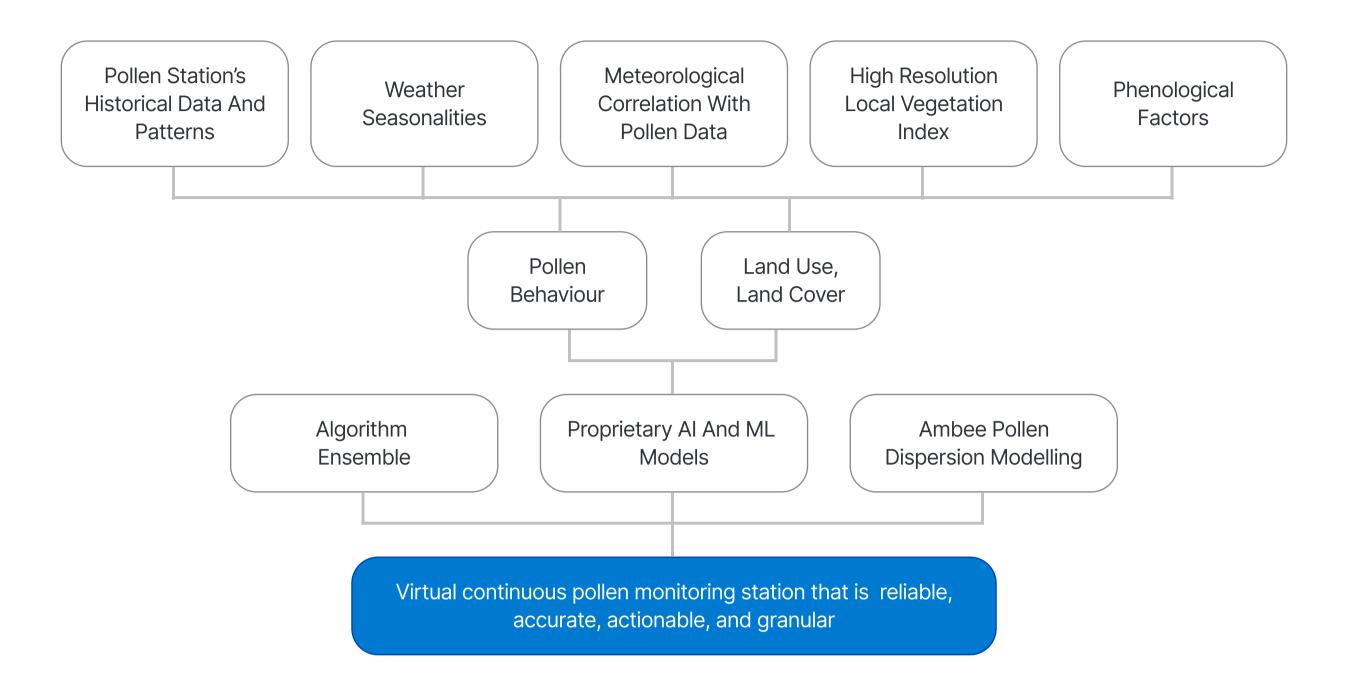
Revolutionize healthcare management: Efficiently address chronic health conditions by gaining valuable insights into environmental triggers, enhancing the overall quality of healthcare.

Tailor marketing campaigns: Revamp your marketing strategies with our pollen API, enabling personalized and targeted campaigns that resonate with your audience.

Elevate customer interaction: Boost consumer engagement through real-time pollen updates and personalized alerts, creating a seamless and valuable customer experience.

Anticipate health challenges: Proactively assess potential health risks stemming from seasonal pollen exposures, enabling timely interventions and preventive measures.

Empower research endeavors: Contribute significantly to health research initiatives by providing accurate and reliable allergy forecast data, advancing our understanding of environmental impacts on health.


Why Ambee's Pollen Data is Better?

For precise pollen data, we integrate insights from pollen stations, analyze weather seasonalities, establish meteorological correlations, and consider high-resolution vegetation indices, phenological factors, employing our proprietary AI & ML models.

- Ambee holds periodical training of proprietary Al and ML models.
- The data is of postcode level with hyperlocal granularity. It is available for all latitudes and longitudes within supported geographies, including underserved regions.
- Ambee's pollen data is modeled after factors like multi-species vegetation, weather, and phenology.
- Ambee provides data on an hourly frequency, and it is regularly updated. It is available throughout the year.
- Real-time pollen data and the hourly forecast with accurate pollen count numbers are available.
- Ambee's risk levels are based on NAB standards, and the risk assessments are done using the NAB-compliant method.

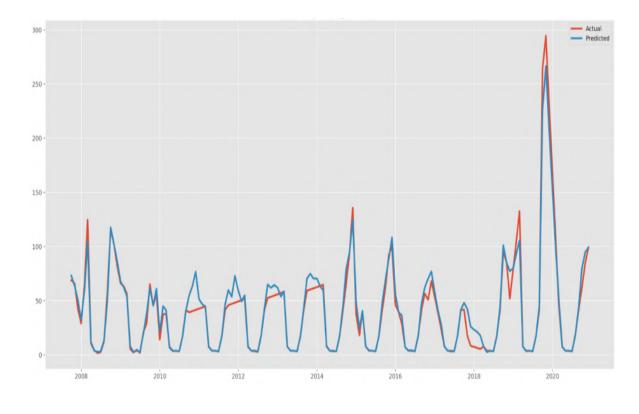
How We Build Data?

Risk Mapping

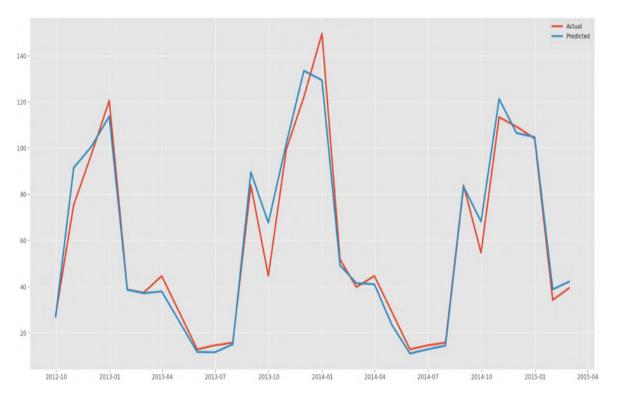
Risk Level	Tree	Grass	Weed
Low	0-95	0-29	0-20
Moderate	96-207	30-60	21-77
High	208-703	61-341	78-266
Very High	704+	342+	267+

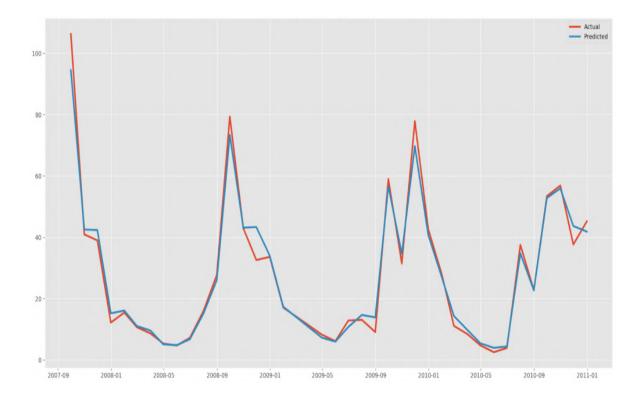
Ground Stations vs. Ambee

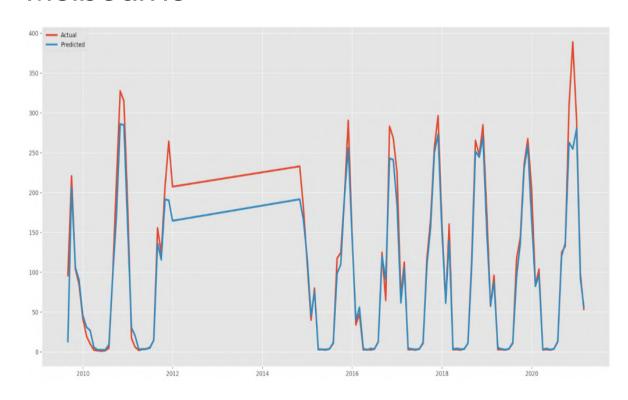
Features	Ground Stations	Ambee
Operating principle	Manual counting stations	Based on real-time stations + meteorological, phenological, and vegetation data
Technology	Sampling and counting by machine	20 years of historical data, analysis, engineering, machine learning, and modeling Output data format
Output data format	Pollen risk categories only	Near real-time pollen types, counts, along with risk levels (low, medium, and high)
Geographical spread	One station per city and depends on the location of the pollen station	Global - Europe, North America, Asia, Australia, and New Zealand
Granularity	Granularity is limited to city level	Postcode-level hyperlocal granularity
Data modeling	Subjected to manual placement and sampling errors	Pollen is modeled after factors like vegetation, weather, and phenology
Seasonal coverage	No data outside the pollen season	Data is provided throughout the year
Frequency	Frequency is limited to daily; generally, irregular	Hourly frequency; regularly updated
Location	Data published only for a few cities	Data is available for all latitudes- longitudes within supported geographies
Availability	No Real-Time Data	Real-time data and the hourly forecast are available


Benchmarking ambee Accuracy Against Industry Standards - Australia

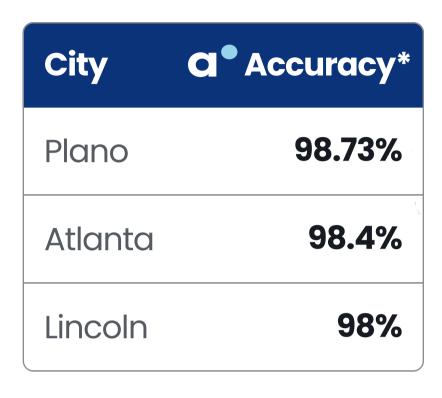
* Accuracy achieved in terms of percentage w.r.t Comparison between the actual pollen count from **on-ground stations and Ambee's model predictions**


City	a • Accuracy*
Canberra	97.5%
Sydney	96%
Hobart	96%
Melbourne	95%

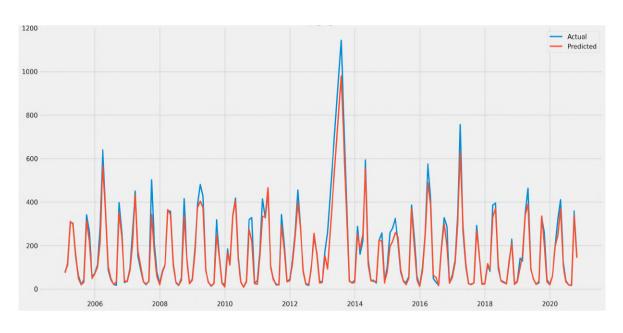

Canberra

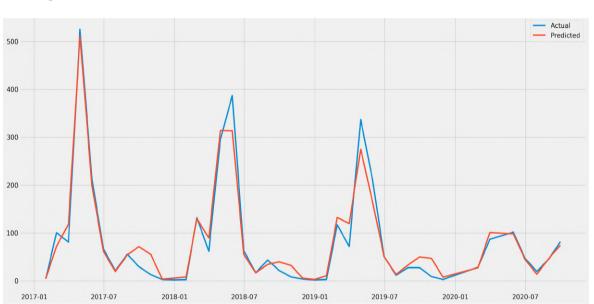

Sydney

Hobart

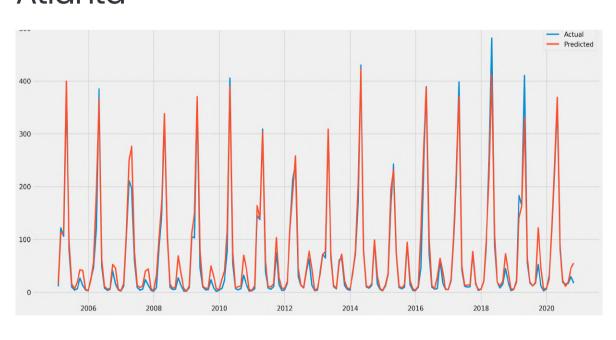

Melbourne

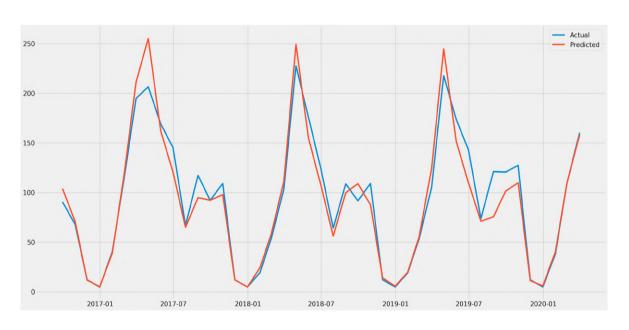
Benchmarking ambee Accuracy Against Industry Standards - USA

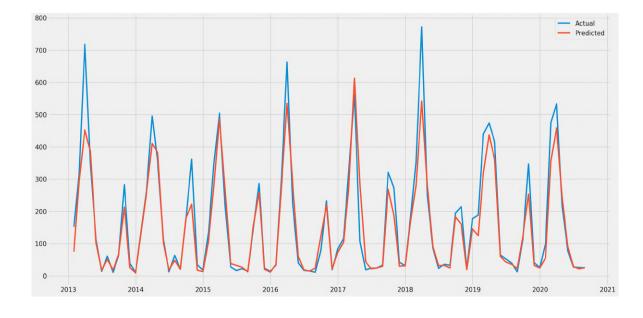

* Accuracy achieved in terms of percentage w.r.t Comparison between the actual pollen count from **on-ground stations and Ambee's model predictions**

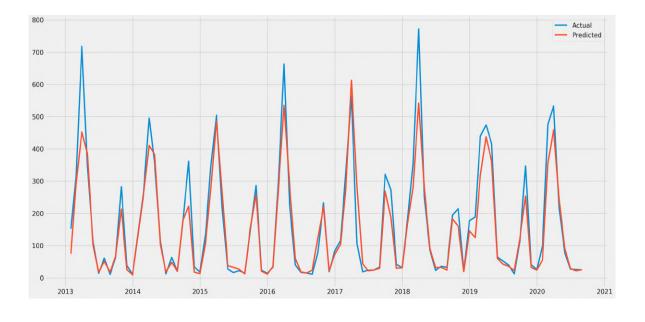


City	a • Accuracy*
Dayton	98%
Boise	97%
Houston	96%


Plano

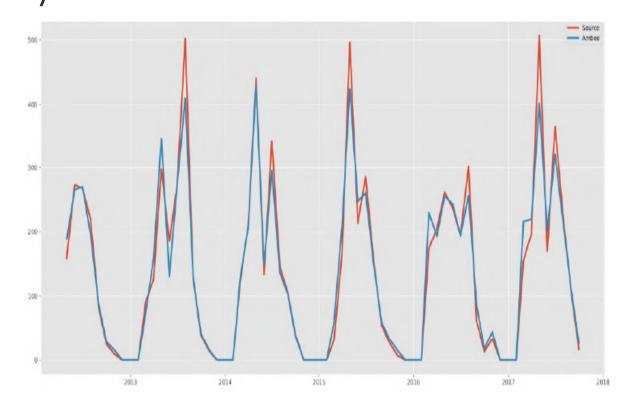

Dayton


Atlanta

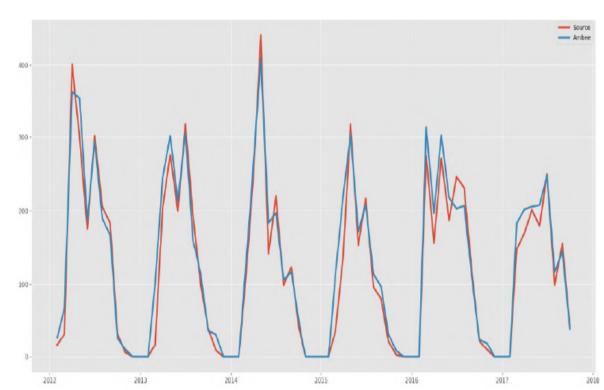

Boise

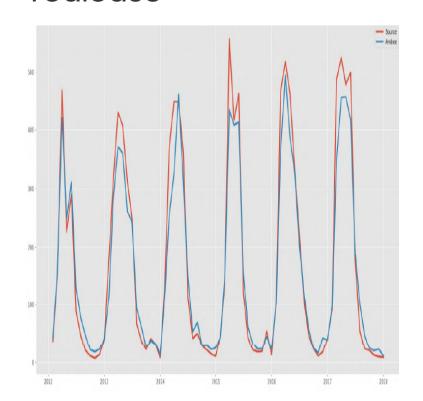
Lincoln

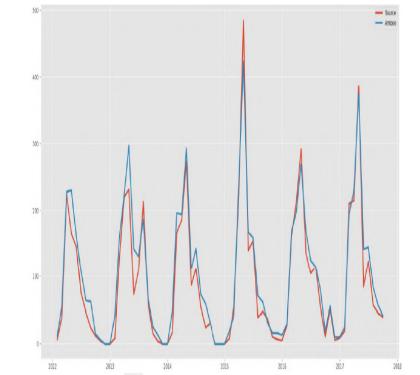
Houston

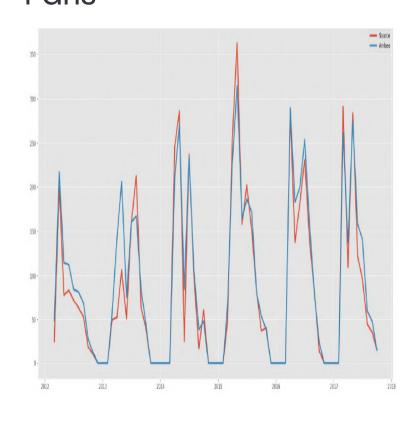

Benchmarking ambee Accuracy Against Industry Standards - Europe

* Accuracy achieved in terms of percentage w.r.t Comparison between the actual pollen count from **on-ground stations and Ambee's model predictions**


City	a • Accuracy*
Lyon	96%
Nice	95%
Toulouse	95%
Bordeaux	94%
Paris	93%


Lyon


Nice


Toulouse

Bordeaux

Paris

Data Comparison

Features	Ambee	Competitor	
Pollen count and species level count	Yes	No	
Risk levels and species risk levels	Yes	Yes	
Coverage	Europe, Asia, North America	Europe and North America	
Granularity	5km x 5km	N/A	
Frequency	Hourly, active for full-year	Hourly	
Historical data	7 days, up to 10 years	Upto 168 hours	
Risk level determination	Values derived through NAB guidelines	Proprietary	
Unit	Pollen grains/m3	Proprietary	
Language Support	Multi-language support on a need basis	N/A	

Try out our APIs

Ambee's data can be accessed using the API key available on the API dashboard. You simply need to sign up for the dashboard, and you will get access to a unique API key and a 15-day free trial. Reach out to our team for any inquiries or collaboration.

Get API Key for Free

Contact Us

Resources

How to get started with Ambee APIs

How To Make An API Call To Ambee APIs Using Postman

Explore our website to discover more about our Ambee.

Appendix

Pollen Risk Levels

This table outlines the assessed risk levels for each type of pollen, determined by applying NAB guidelines to our comprehensive dataset. The percentile values extracted from the extended seasonal data for each specific pollen type provide a nuanced perspective on the potential risks associated with varying pollen types. This assessment serves as a valuable tool for understanding and communicating the dynamic nature of pollen-related hazards.

Risk Level	Tree	Grass	Weed
Low	0-95	0-29	0-20
Moderate	96-207	30-60	21-77
High	208-703	61-341	78-266
Very High	704+	342+	267+

Pollen Species Risk Levels

Species	Low	Moderate	High	Very High
Acacia*	Below 96	96-207	208-703	Above 703
Alder	Below 22	22-32	33-81	Above 81
Ash	Below 22	22-37	38-63	Above 63
Birch	Below 47	47-99	100-264	Above 264
Casuarina	Below 11	11 - 16	17-33	Above 33

^{*} If species are not significantly present, parent category risk level is used instead.

Species	Low	Moderate	High	Very High
Cypress	Below 56	56-85	86-257	Above 257
Cypress/Juniper/Cedar	Below 56	56-85	86-257	Above 257
Elm	Below 12	12 - 20	21-48	Above 48
Hazel	Below 10	10 - 13	14-30	Above 30
Maple	Below 11	11 - 18	19-34	Above 34
Mulberry	Below 22	22-38	39-74	Above 74
Myrtaceae	Below 12	12 - 22	23-49	Above 49
Oak	Below 28	28-57	58-195	Above 195
Olive*	Below 96	96-207	208-703	Above 703
Pine	Below 13	13-26	27-80	Above 80
Plane	Below 28	28-51	52-86	Above 86
Poplar/Cottonwood	Below 21	21-42	43-102	Above 102
Willow*	Below 96	96-207	208-703	Above 703
Aster*	Below 21	21 - 77	78-266	Above 266
Chenopod	Below 5	5 - 9	10-41	Above 41
Mugwort*	Below 21	5 - 9	21 - 77	Above 266
Nettle	Below 20	20-56	57-166	Above 166
Plantago*	Below 21	21 - 77	78-266	Above 266
Ragweed	Below 10	10 - 15	16-77	Above 77
Rumex*	Below 21	21 - 77	78-266	Above 266
Sedges*	Below 21	21 - 77	78-266	Above 266