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Exploring Seasonal Pollen Probabilities:
A Comparative Approach
Pareekshith US Katti, N Nithin Srivatsav, Anmol Khilwani

Abstract

This research analyzed pollen count data from major urban centers such as Sydney,

New York, Lyon, Paris, and London. Employing gamma and beta distributions, the

study modeled the skewed nature of pollen counts and generated synthetic data to

explore distribution characteristics over time. Focusing on weekly fluctuations for

clearer seasonal patterns, the research evaluated accuracy using the R-squared score

and extended findings to diverse cities. The study addressed challenges in creating

synthetic datasets for pollen forecasting, emphasizing the importance of local

adaptation, categorizing months based on pollen behavior, and scaling data using

locally adapted averages. Demonstrated in Sydney, this scaling significantly improved

alignment between synthetic and actual data. Beyond pollen analysis, the research

underscored the relevance of considering local factors, seasonality, and data scaling in

generating synthetic datasets for diverse regions. Contributing to the understanding of

synthetic data generation, the study emphasized practical applications in

environmental monitoring and public health. Ongoing research was essential for

refining methods and enhancing accuracy across various domains.



Introduction
Pollen allergies affect a substantial 30% of the global population (the-pollen-problem,

2023), with managing chronic allergies costing an alarming $18 billion annually in the

United States alone (Facts and Stats - 50 Million Americans Have Allergies | ACAAI Patient,

2022). Compounding this issue is a 96.3% surge in pollen levels since 1998, contributing

to around 100 million yearly spikes in respiratory ailments in the US (the-pollen-problem,

2023). This upward trend in pollen concentration demands urgent attention due to its

significant impact on both individual well-being and healthcare expenditure.

Traditional methods for measuring pollen levels involve manual collection and

microscopic analysis. These include microscopic examination, where airborne particles

are collected on surfaces and identified using light microscopes, Rotorod Sampler, a

mechanical device with a rotating rod coated with a sticky substance for outdoor

particle collection (Frenz et.al., 1997), Burkard Trap (Levetin, Estelle, et al. 2000), a

widely used pollen sampler with a rotating drum coated in silicone grease, Pollen Slide

Trap, which uses a sticky surface to collect particles transferred onto a glass slide for

microscopic analysis and Gravimetric Methods, measuring the increase in weight on

surfaces due to pollen deposition with a potential need for additional microscopic

identification. Traditional methods have played a crucial role in understanding pollen

distribution. However, these methods exhibit several shortcomings. Microscopic

examination introduces subjectivity and the potential for human error in pollen

identification, impacting the consistency and reliability of results. Additionally,

traditional techniques are often limited in spatial coverage, providing localized

information at specific monitoring stations and failing to capture the broader picture of

pollen distribution across diverse landscapes.



Moreover, these methods can be time-consuming, labor-intensive, and may lack

real-time data capabilities, hindering their scalability and effectiveness for large-scale or

continuous monitoring. The dependency on weather conditions and the inability to

offer quantitative precision further underscores the limitations of traditional pollen

measurement approaches. A notable and concerning observation emerges as a

significant deficiency in pollen monitoring infrastructure is identified in regions such as

South America, Africa, and Asia.

To address these shortcomings, there is a need for a paradigm shift towards integrating

modern technologies. Automated sampling devices, remote sensing tools, and

predictive models (Papadogiannaki et.al., 2023) offer opportunities to enhance the

accuracy, scalability, and timeliness of pollen-level assessments. These technologies

mitigate the subjectivity associated with manual methods, provide broader spatial

coverage, and enable real-time data collection. By combining the strengths of traditional

and modern approaches, researchers can obtain a more comprehensive understanding

of pollen dynamics, contributing to improved allergy management strategies and

better-informed public health interventions.

The spatial coverage of traditional pollen monitoring methods is often limited due to

inherent challenges such as stationary monitoring stations concentrated in urban areas,

resource constraints hindering establishment in remote regions, logistical difficulties in

expansive areas, and a dependency on population centers for monitoring (Buters et.al.,

2018). This uneven distribution leads to gaps in coverage, leaving rural or less

populated areas underrepresented. Additionally, traditional methods may not

effectively capture dynamic changes in pollen distribution over time or consider the

influence of diverse environmental conditions. To address these limitations and

enhance spatial coverage, there is a growing recognition of the need to integrate

modern technologies like remote sensing and predictive models (Picornell, A., et al.



2019), which offer a more comprehensive and dynamic approach to monitoring pollen

levels across diverse landscapes.

Machine learning and probabilistic modeling present innovative solutions to address

the lack of spatial coverage in pollen monitoring (Mills, Sophie A., et al. 2023). These

technologies can predict pollen distribution by analyzing existing data and

environmental variables and performing temporal and spatial interpolation by

automating data processing and utilizing advanced algorithms, machine learning and

probabilistic modeling offer scalable, cost-effective, and timely solutions to

revolutionize pollen monitoring and bridge spatial gaps in regions where traditional

infrastructure is limited.



Literature Review

A comprehensive examination delved into the pollen seasons across the North

American region, encompassing both the United States and Canada. The study utilized

data from 31 National Allergy Bureau (NAB) pollen stations spanning the years 2003 to

2017, with the primary objective of developing easily understandable pollen calendars

catering to individuals with allergies and healthcare professionals. Noteworthy findings

highlighted a negative correlation between the initiation date and duration of the

primary pollen season. This underscored that locales experiencing earlier onset dates,

particularly at lower latitudes, were associated with prolonged pollen seasons.

The research noted the widespread impact of pollen allergies on a significant segment

of the U.S. population, emphasizing the crucial need for precise comprehension of the

primary pollen season for accurate diagnosis and effective treatment. The study

concluded by stressing the imperative for enhanced spatiotemporal monitoring of

pollen concentrations while acknowledging the limitations in the coverage of NAB data.

Recommendations included consistent year-round daily sampling and an expansion of

monitoring stations. The study also emphasized the importance of documenting the

spatial and temporal structure of the primary pollen season for allergenic pollen taxa.

Geographical nuances were explored, revealing a distinct latitudinal signal for the

commencement date of pollen seasons, particularly concerning significant allergenic

tree pollen taxa. Regional variations, such as the earlier onset of tree pollen seasons on

the West Coast attributed to milder climates, were linked to factors like temperature and

air transport from the Pacific Ocean. Notably, most locations experienced their tree

pollen season from February to May, while the peak of grass pollen season occurred in

June and July. Weed pollen, on the other hand, peaked in August and September (Lo, F.,

Bitz, C.M., Battisti, D.S. et al. 2019).



A study was conducted to construct a pollen calendar for Germany, exploring regional

variations in pollen seasons across different parts of the country. The study specifically

investigated the main flowering periods (MFP) of various tree and grass pollen types in

the north, central, east, west, and south regions, utilizing data spanning from 2011 to

2016. Noteworthy findings included significant disparities in MFP, such as the grass

MFP concluding 6 days earlier in the western region compared to both the northern and

southern regions. The study underscored the importance of regional pollen calendars in

providing accurate and region-specific information about pollen seasons,

acknowledging the influence of climatic variations. According to the research, most

trees had their main pollen flowering period between February and May, while grasses

had it during June and July. Weed species had their main flowering period from late

May to September (Werchan et al. 2019).

The University of Worcester in the United Kingdom published pollen calendars, which

provided valuable insights into the seasonal dynamics and regional variations of

allergenic pollen types. These calendars assisted individuals susceptible to

pollen-induced allergies. The study detailed comprehensive pollen calendars for diverse

regions, ranging from Scotland to Southeast England. It highlighted the appearance,

risk levels, and peak periods of pollen types such as Hazel, Alder, Ash, Birch, Oak,

Grass, and the Nettle family. This information was derived from a 10-year analysis

(2003 to 2014) of main UK pollen allergens, offering a robust historical perspective on

the prevalence and risk of allergenic pollen. Additionally, the inclusion of a generalized

pollen calendar contributed to a holistic understanding of when major allergenic plants

were in flower during the UK's pollen season, emphasizing the importance of

considering geographical and temporal factors. The overall seasonality was similar to

what had been observed in the pollen calendars published in Germany, with some



variations (Pollen Calendars by Area - University of Worcester, n.d.). Pollen calendar

published in Ireland also showed similar seasonality (Earlscliffe - Howth Weather, n.d.).

A research presented a 15-year airborne pollen survey in Portugal, aimed at creating

pollen calendars for seven monitoring regions. The study, conducted by the Portuguese

Aerobiology Network, recorded 14 airborne pollen types, with 64.2% from trees, 28.5%

from herbs, and 7.1% from weeds. Dominant allergenic types included Poaceae,

Quercus spp., Urticaceae, and Cupressaceae. The average pollen index was higher in

mainland Portugal than in the Islands, showing an increasing trend over the years,

notably in Coimbra, Évora, and Porto. Grass pollen sensitization was prevalent among

patients (34.4%), followed by Olea (21.3%) and Parietaria (17.5%). The study revealed a

Mediterranean pollen spectrum, with varied prevalence in different regions. The pollen

calendars indicated a concentration of allergenic taxa from March to July. The

prevalence of respiratory allergies induced by pollen in Europe has been increasing.

Despite seasonal variations, airborne allergens could occur throughout the year in

specific regions, emphasizing the importance of continuous aerobiological research. The

pollen calendar showed similar seasonality to Germany and the UK with some

variations (Camacho, Irene, et al. 2020). Pollen calendars published in Spain also showed

similar seasonality (Estación Aerobiológica Universidad De Málaga, n.d.).

A study conducted in urban areas of Australia and New Zealand revealed distinct shifts

in pollen seasons, transitioning from prolonged periods in tropical regions to shorter

durations in temperate zones, a phenomenon attributed to the influence of solar

radiation incidence on pollen production. The research acknowledged the significant

impact of surrounding land use on airborne pollen, noting variations in urban areas

bordered by agricultural landscapes compared to those with greater forest cover. The

study emphasized the potential for alterations in land use at urban boundaries to

influence the types of airborne pollen within urban areas. Notably, cities such as



Sydney, Canberra, Melbourne, and Hobart exhibited overlapping pollen seasons for

multiple species with some variations, highlighting the complexity of regional pollen

dynamics in these urban environments (Haberle, Simon G., et al., 2014).

In a comprehensive analysis of airborne pollen in Chandigarh from 2018 to 2020, 74

pollen types were identified, and the Annual Pollen Integral was calculated. Morus alba

emerged as the primary contributor with the highest annual mean pollen percentage.

Two distinct pollen seasons were evident: spring (February–April), dominated by

arboreal pollen types, and autumn (August–October), characterized by herbaceous

pollen types. The pollen calendar illustrated notable concentrations and extended

season lengths over the two years (Ravindra, Khaiwal, et al. 2021). A parallel study in

Allahabad revealed two main pollen seasons: February–May, featuring arboreal taxa as

chief contributors, and September–October, dominated by grasses. Correlation analyses

highlighted negative relationships between daily pollen counts and minimum

temperature, relative humidity, and rainfall (Sahney et al., 2008). Both investigations

underscored the significance of comprehending local pollen dynamics for managing

pollen-related allergic diseases, emphasizing consistent seasonal patterns between the

two cities.

Research on airborne pollen concentrations in Argentina, specifically in Bariloche,

Cordoba, Bahia Blanca, and Santa Rosa, revealed a distinct seasonality, with peak pollen

concentrations observed in spring, particularly in August and October. Tree pollen

dominated across all locations, followed by grass and weed pollen. The study

underscored the impact of airborne pollen on seasonal allergic diseases in Argentina,

highlighting a significant scarcity of literature on the prevalence of allergic diseases and

airborne allergens in the country. Despite overlapping pollen seasons in most cities

during September-October, Bahia Blanca experienced its peak in August. The research

called for further investigation into pollen seasonality, its link to allergic diseases,



patient sensitization, climate change effects, standardization of pollen concentrations,

and the development of a national pollen map (Ramon et al., 2020).

The significant challenge lies in the scarcity of prevailing literature and data. However,

the presence of overlapping seasonalities offers an opportunity to employ probability

models for the analysis of pollen data.



Methodology
Data for this research were acquired for three years from diverse urban locations. The

primary dataset encompassed time-stamped pollen count records for each city. To gain

preliminary insights into the distribution patterns of pollen counts across various cities

and temporal intervals, we employed descriptive statistical measures and data

visualization techniques. This was repeated five times, each instance utilizing distinct

seed values.

The primary goal of our analysis was to construct models for the probability

distributions of pollen counts in various cities. To accomplish this, we utilized Beta and

Gamma distributions, recognized for their suitability in capturing the fluctuations in

pollen counts. Subsequently, the parameters of these distributions were employed to

simulate pollen counts. The overall count was computed by aggregating individual

pollen counts.

The study encompassed five distinct urban locales: Sydney, New York, Lyon, Paris, and

London. For each city under investigation, histograms with kernel density estimations

(KDEs) were produced independently. The findings of the analysis revealed a positively

skewed distribution, primarily concentrated towards lower pollen counts across all the

urban centers studied.



Fig 1: Distribution of Pollen Counts for the Selected Cities

The data underwent fitting procedures for both Gamma and Beta distributions. The

rationale behind exploring these distributions stemmed from the inherent right-skewed

characteristics exhibited by the data. The primary objective was to adeptly capture and



model this skewed data distribution. The research endeavor aimed to ascertain the most

suitable distribution that concurred with the observed right-skewed pattern evident in

the pollen count data.

Two distinct functions were developed to periodically fit gamma and beta distributions

to the data, contingent upon the designated time intervals, such as months. With each

unique time interval value, the corresponding pollen count values were isolated, and a

distribution was fitted accordingly. The resultant distribution parameters were gathered

and recorded for each time period.

Our methodology comprised several phases. To begin, we calculated distribution

parameters customized to the Paris dataset. Leveraging these estimated distribution

parameters, we synthesized data points to emulate the distribution traits observed

during particular months or weeks, with a primary emphasis on preserving data

integrity.

To assess the effectiveness of gamma and beta distributions in capturing the weekly

fluctuations in pollen counts, and where applicable, the monthly variations, we

quantified the accuracy of these approximations using the R-squared (R2) score. This

score was calculated for both the actual data and the synthetic data, specifically for

weekly aggregations. This evaluation provided insights into the degree of concordance

between the distributions and the observed patterns of pollen counts in Paris over both

monthly and weekly timeframes.

Our decision to concentrate on weekly fluctuations instead of daily ones was motivated

by the substantial variance apparent in daily data. Analyzing daily variations would

introduce significant noise and variability, rendering it difficult to discern underlying

patterns or seasonality in the pollen count data. By aggregating the data weekly, we

intended to minimize the influence of daily noise, thereby facilitating a more lucid



exploration of stable and consistent trends in pollen counts over time. This approach

enabled us to effectively investigate seasonal patterns and variations while mitigating

the complications associated with the daily data's fluctuating nature.

We evaluated the beta distribution's capability to replicate weekly fluctuations in pollen

counts within the city of Paris. Following this assessment, we expanded our analysis to

create synthetic data using the beta distribution parameters obtained from Paris. We

then compared this synthetic data with the actual data from other cities situated within

the same country, the same region, and even across a different hemisphere. Our goal

was to evaluate the degree to which the beta distribution parameters derived from Paris

effectively mirrored the genuine weekly patterns of pollen counts in these other cities.

For our next experiment, we categorized months into different levels based on the mean

monthly total pollen count. This categorization aimed to align the seasonal patterns of

Paris with those of New York and Sydney, facilitating a comparative assessment of

pollen count dynamics. We estimated parameters describing the distribution

characteristics at regular intervals. Subsequently, we generated synthetic data that

adhered to these distribution patterns, making necessary adjustments to eliminate

negative values. The data was then aggregated weekly for temporal analysis, and we

quantified the alignment between observed and synthetic pollen counts using the

R-squared score.

To ensure representative sampling, we implemented a stratified sampling method. This

involved selecting 25% of the data from the city of Paris systematically to compute

monthly means. We then scaled each month's dataset by its corresponding monthly

mean. This process included grouping the data by month, selecting a random 25%

sample within each month, and calculating monthly means by grouping the data again

by month. Scaling factors were determined by dividing the monthly mean of observed



pollen counts by the monthly mean of synthetic pollen counts. The synthetic data

underwent adjustments by scaling them with the scaling factors obtained earlier.

Subsequently, we aggregated the data weekly to calculate the weekly averages for both

observed and adjusted synthetic pollen counts. Finally, we computed an R-squared (R2)

score to quantify the degree of alignment between the weekly averages of observed

pollen counts and the adjusted synthetic pollen counts.

Our research methodology maintained consistency across New York City (NYC) and

Sydney, Australia, following the same analytical procedures applied in Paris. Both

cities' datasets underwent categorization based on predefined criteria. Synthetic data,

generated to adhere to the beta distribution, were created for each city, utilizing beta

distribution parameters initially estimated using Paris's data. These synthetic datasets

were then adjusted to ensure non-negativity. The analysis centered on calculating

weekly averages and assessing alignment with observed pollen counts through the

R-squared (R2) score. Additionally, scaling factors were computed for each city based

on monthly means, allowing for the normalization of synthetic data to reflect observed

data dynamics.



Results

The study investigated the appropriateness of utilizing two distinct statistical

distributions, namely the gamma and beta distributions, for representing the seasonal

variation in pollen data. To assess the goodness of fit for these models, the research

employed the R2 score, which offers an overall assessment of the extent to which the

distributions aligned with the actual data.

Table 1: Weekly R2 Scores for various trials for different probability distribution configurations

When assessing how well the gamma distribution fit the monthly pollen data, the R2

scores fell within the range of 0.39 to 0.44. These scores suggest a moderate level of fit.

Nonetheless, it is worth highlighting that the gamma distribution encountered

difficulties when it came to adequately modeling specific months, as evidenced by the

lower R2 scores, especially those hovering around 0.39.



Fig 2: Comparison of Gamma and Beta Distributions under Monthly and Weekly Configurations (Seed 0)

Furthermore, when examining visual representations of the synthetic data from

monthly gamma distributions, anomalies, and irregularities in trendlines were evident

for certain months, pointing to limitations in its ability to accurately capture the

subtleties present in the pollen data.

In stark contrast, the beta distribution consistently outperformed the gamma

distribution in both monthly and weekly analyses. When we delved into the monthly

distributions, the R2 scores for the beta distribution consistently fell within the range of

0.66 to 0.70, indicating a substantially stronger fit to the data. This pattern persisted

when scrutinizing the data at a weekly granularity, with R2 scores ranging between 0.74

and 0.86. These results emphasize the beta distribution's reliability in representing

seasonal pollen probability distributions, positioning it as a superior choice when

compared to the gamma distribution. Its ability to yield consistently higher overall R2

scores underscores its capacity to offer a more precise depiction of the seasonal

fluctuations in pollen data, thereby affirming its suitability for this research context.



Consequently, the beta distribution emerges as a more robust tool for comprehending

and modeling pollen distribution patterns throughout the year.

The core focus of our analysis revolved around the utilization of the beta distribution

parameters that we derived from the pollen data in Paris. We created a distribution for

each week. We used these parameters to generate synthetic data, effectively simulating

pollen distributions. To assess the reliability and applicability of this synthetic data in a

broader context, we compared it to actual pollen data collected from several distinct

cities, including Lyon, London, New York, and Sydney. This comparison provided us

with valuable insights into how well our synthetic data performed when applied to

various geographical locations. It allowed us to gauge the effectiveness of our modeling

approach and draw meaningful conclusions about the generalizability of the beta

distribution parameters obtained from Paris's data to other urban environments.

Fig 3: Comparison of Actual Counts for Other Cities vs Synthetic Data Generated Using Weekly Beta

Distributions for Paris (Seed 0)



Table 2: Weekly R2 Scores for different cities when compared against data generated from weekly

distribution for Paris

As anticipated, the synthetic data yielded the least favorable results when applied to

Sydney, a city situated in the Southern Hemisphere, which experiences opposite

seasonal variations compared to Paris in the Northern Hemisphere. In all five trials

conducted, Sydney consistently displayed notably low R2 scores, hovering around -12.

This outcome aligns perfectly with our expectations, as it is well-established that the

seasonal patterns in pollen data can diverge significantly between hemispheres due to

the contrasting nature of their seasonal variations.

New York, another city located in the Northern Hemisphere like Paris, exhibited

relatively low R2 scores, albeit with some variability observed across the different trials.

These findings imply that, although there might be certain resemblances in seasonal

patterns between Paris and New York, the synthetic data failed to capture and replicate

these patterns accurately. The variation in R2 scores across trials underscores the

nuanced and complex nature of pollen distribution, which can be influenced by local

factors and conditions specific to each city, even within the same hemisphere.



In a similar geographic region to Paris, London exhibited a broad spectrum of R2 scores,

ranging from 0.48 to 0.70 across the trials. This considerable variability in scores

suggests that the synthetic data had some success in partially representing the

seasonality found in London's pollen data. However, the diversity in these scores also

indicates that the synthetic data may not have been able to precisely replicate the exact

nuances of London's pollen distribution in every trial. It highlights the complexity of

modeling pollen patterns even in closely related regions, underlining the potential

impact of local factors and unique environmental conditions on pollen data variations.

Lyon, situated within the same country as Paris, showcased the highest R2 scores

among the cities, spanning from 0.72 to 0.77. These results indicate that the synthetic

data demonstrated relatively strong performance in replicating the seasonal patterns

observed in both Paris and Lyon. This outcome aligns with expectations, given their

close geographical proximity and shared regional characteristics. It underscores the

utility of synthetic data in capturing and reproducing pollen distribution patterns in

areas with similar environmental conditions and seasonal trends.

The performance of the synthetic data, generated using the beta distribution

parameters, exhibited variations when applied to different cities. It demonstrated strong

performance for cities within the same country or region, while its effectiveness

diminished for cities located in different hemispheres. This observation underscores the

critical importance of accounting for local environmental factors and geographical

distinctions when undertaking pollen distribution modeling. It reinforces the idea that

successful modeling should be tailored to the specific characteristics and seasonal

variations unique to each geographic location.

To harmonize the seasonal patterns of pollen data across diverse regions, an alternative

approach was adopted. Monthly data from Paris, New York, and Sydney were stratified

according to percentile values corresponding to their respective monthly averages. The



rationale behind this strategy was to cluster months with analogous pollen patterns into

the same category, acknowledging that although pollen seasonality may fluctuate

monthly, the broader pollen behavior might remain stable during peak and off-seasons.

This classification process yielded unique groupings for each city, segregating months

into categories denoting low, moderate, high, or very high pollen behavior.

Table 3: Categorization of Months into Low, Moderate, High, and Medium based on pollen counts

After the categorization process, an analysis was undertaken using the weekly R2 score,

a metric designed to gauge the degree of alignment between the synthetic and actual

pollen data. While this categorization did address some of the seasonality concerns, a

new challenge emerged - a noticeable variation in the magnitude of pollen counts across

the different cities. To tackle this scaling discrepancy, a stratified sampling approach



was implemented. For each month, a random 25% sample of the data was utilized to

compute monthly averages for each city. These computed averages were then employed

to adjust the scale of the synthetic data for each corresponding month, effectively

harmonizing it with the distinct ranges observed in each city's actual pollen data.

Fig 4: Comparison of Actual Counts and Synthetic Data After Categorization and Scaling (Seed 0)



Table 4: Weekly R2 Scores after categorization with and without scaling

Before scaling, Paris's data demonstrated a relatively strong fit between the synthetic

pollen data, generated based on its distribution, and the actual pollen counts, with R2

scores ranging from 0.68 to 0.71 across five trials (Seeds 0 to 4). This indicated a close

resemblance between the initial synthetic data and the actual pollen counts in Paris.

Following the implementation of the scaling process, there were alterations in the R2

scores, with values spanning from 0.49 to 0.75. While certain trials exhibited

improvements, as exemplified by Seed 3, where the R2 score increased to 0.75, others

displayed variability, as observed in Seed 4 with a score of 0.49. In summary, scaling

seemed to enhance the alignment of synthetic data with Paris's actual pollen data in

specific instances, although the impact varied across different trials.

New York's data exhibited varying levels of fit before scaling between the synthetic

pollen data, generated based on Paris's distribution, and the actual pollen counts. The

R2 scores spanned from 0.16 to 0.33 across five trials (Seeds 0 to 4), indicating a lack of

close alignment between the initial synthetic data and New York's actual pollen counts.



However, after implementing the scaling process, significant enhancements were

evident. The R2 scores post-scaling ranged from 0.65 to 0.73, with the higher values

signifying a substantially improved fit between the scaled synthetic data and the actual

pollen counts. This underscored the effectiveness of the scaling process in bringing the

synthetic data into better alignment with New York's pollen data, highlighting the

pivotal role played by locally adapted monthly averages in achieving this improved fit.

Sydney's data initially exhibited negative R2 scores, ranging from -3.7 to -2.98 across

five different trials (Seeds 0 to 4) before the scaling process was applied. These negative

R2 scores pointed to a significant lack of alignment between the synthetic pollen data,

generated based on Paris's distribution, and the actual pollen counts in Sydney. The

synthetic values were notably higher than the actual values, indicating a substantial

disparity. However, after implementing the scaling process, a remarkable improvement

was observed. The R2 scores post-scaling ranged from 0.76 to 0.81, showcasing a strong

fit between the scaled synthetic data and the actual pollen counts. This scaling

procedure effectively addressed the issue of overestimation, bringing the synthetic data

into much closer agreement with Sydney's actual pollen data and resulting in highly

favorable R2 scores. This indicates the successful calibration of the synthetic data to the

local context in Sydney.

The substantial increase in R2 scores following the scaling of the synthetic data in

Sydney can be attributed to the successful adaptation of the synthetic dataset to the

unique pollen characteristics of the city. Initially, the synthetic data generated using

Paris's distribution resulted in negative R2 scores, indicating a significant

overestimation of pollen counts in Sydney. However, the scaling process effectively

resolved this issue by aligning the synthetic data with locally adjusted monthly

averages, thereby matching the scale and seasonality of pollen counts in Sydney more

accurately. This scaling procedure effectively mitigated the problem of overestimation,



reducing the disparity between the synthetic and actual data. This notable improvement

underscores the critical importance of considering local factors and calibration when

generating synthetic data for different regions, ultimately resulting in a much closer fit

between the synthetic and actual pollen counts in Sydney.

This highlights that while addressing seasonality was an important advancement,

ensuring the precise scaling of synthetic data using locally adapted monthly averages

was vital to obtain accurate results in diverse geographic regions.

This approach highlights the significance of both capturing seasonality and adeptly

scaling synthetic data when dealing with pollen data from various cities. It enables a

more precise depiction of pollen behavior across regions, ultimately enhancing the

alignment between synthetic and actual data, and yielding valuable insights into pollen

forecasting and analysis.



Conclusion

In this research, we analyzed the generation of synthetic pollen data and its correlation

with real pollen counts across diverse geographical regions. The experiment unveiled

critical insights into the challenges and solutions related to synthesizing data for

time-series analysis, specifically within the domains of pollen forecasting and

environmental health.

Our investigation underscored the paramount importance of local adaptation in crafting

synthetic datasets. While applying probability distributions yielded positive outcomes

for similar regions, it became evident that simply modeling after one location's data was

insufficient to capture the nuances of pollen behavior across diverse regions. Instead,

our approach focused on categorizing months based on pollen behavior, maintaining

seasonality, and addressing the significant challenge of scale mismatch.

The findings demonstrated that scaling synthetic data using locally adapted monthly

averages played a crucial role in mitigating disparities between synthetic and actual

data. Notably, a remarkable improvement was observed in the alignment of synthetic

data with actual pollen counts in Sydney, where the initial synthetic data showed

negative R2 scores. The scaling process rectified overestimation issues, bringing the

synthetic data into close alignment with the local context, as evidenced by highly

favorable R2 scores.
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