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Leveraging Satellite Intelligence to
Monitor Carbon Sinks: Advancements,

Challenges, and Future Perspectives
Soorya R, Pareekshith Katti

Abstract

A central focal point within ongoing contemporary environmental discourse pertains to

the elevated prevalence of atmospheric carbon dioxide (CO2) levels, intensifying the

greenhouse effect. This prevalence amplifies its negative impact on our environment.

The principal and most significant repositories of carbon on our planet encompass a

diverse range of ecosystems, including the expansive oceanic expanses, the sprawling

canopies of extensive forests, and the intricate and delicate wetland environments.

Together, these ecosystems play a pivotal role in lessening the concentration of CO2 in

the atmosphere. These natural systems, acting as vital carbon sinks, perform the

essential function of absorbing and storing carbon dioxide emissions from various

sources. This intricate interplay between natural reservoirs and carbon emissions is a

fundamental component of maintaining equilibrium in the global carbon cycle. The

integration and deployment of remote sensing satellites, encompassing a range of both

active and passive platforms such as MODIS, Landsat, Sentinel, and various other

advanced systems, have significantly amplified our capacity to acquire and access data

about vegetation. This technological advancement has revolutionized our ability to

monitor and understand changes in plant cover, health, and distribution over vast

geographic areas and extended periods. The collective utilization of these sophisticated

satellite systems has brought about a transformative shift in how we gather critical



information related to vegetation dynamics and their broader ecological implications.

Within the scope of this investigation, we evaluated various previous research efforts

that have explored the employment of satellite imagery for the monitoring of carbon

sinks. Our study specifically concentrated on three distinct natural carbon sinks:

Forests, Wetlands, and Oceans. Furthermore, we showcased the practical application of

satellite data in the monitoring of Forests, with a detailed analysis of the MODIS NDVI

Data Product. We focused on a region in South America near BR-163 in Brazil, and we

used more detailed MODIS NDVI data to understand how vegetation was changing.

Our study showed that satellite-derived NDVI data is very useful for watching how

vegetation changes in specific areas. By looking at local changes, we saw how

vegetation was changing over 5-year periods. This let us see and measure changes in

vegetation due to things like deforestation. This research points out the usefulness of

using satellites, especially MODIS NDVI data, to learn more about how carbon storage

works and how ecosystems are changing. As we deal with climate change and the need

to reduce carbon emissions, using data from satellites is really important for making

smart decisions about the environment.



1. Introduction

Carbon dioxide, recognized as one of the most harmful greenhouse gases, is

present in much higher quantities than other greenhouse gases. This intensifies its

negative impact on the environment. As carbon dioxide emissions continue to rise, they

have a widespread detrimental effect by creating a dense layer of greenhouse gases.

This worsens the greenhouse effect and leads to excessive heat being trapped in the

Earth's atmosphere. The Earth's primary method of capturing carbon is through large

natural systems. These include vast oceans, dense forest canopies, and intricate wetland

ecosystems. Together, they work to reduce the levels of carbon dioxide in the

atmosphere. Vegetative ecosystems, especially the long-standing carbon reservoirs in

forests, play a crucial role in absorbing CO2 from the air. This process is vital for

maintaining a stable global carbon balance (González-Alonso, F., et al., 2005).

Precisely estimating the capacity of ecosystems to capture and store carbon dioxide is a

critical necessity for the successful operation of global carbon accounting systems

(Potter, et al.,2003). When employed suitably, remote sensing technologies present

significant benefits for the supervision and assessment of agroforestry initiatives

(Macdicken, et al., 1997).

The availability of vegetation data has been significantly enhanced by the increasing

number of remote sensing satellites operating both actively and passively, including

Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, Sentinel, and

others. This abundance of resources has made the challenge of monitoring and

predicting vegetation dynamics both interesting and challenging. (Ferchichi, Aya, et al.,

2022). Even with low-resolution data obtained from the Landsat MSS scanner, the

integration and enhancement of the imagery can reveal a significant portion of the

transitions in land use between forested and non-forested categories, ranging from 80%

to 90% (Coppin, et al.,1996). Remote sensing has become increasingly popular in the



field of land cover change identification, and the use of satellite data to accurately

estimate forest biomass has further increased its value in the assessment and

monitoring of forest ecosystems. (Alonso, et al., 2006).

This paper reviews the various approaches to carbon sink monitoring using remote

sensing data. It focuses primarily on the use of satellite data for a variety of purposes,

such as assessing wetlands, monitoring land use, land cover, marine ecosystem

monitoring, and pollutant detection in the ocean. This paper further elaborates on the

difficulties of using remote sensing data to effectively monitor carbon sinks, providing

valuable insights and data on the challenges and limitations associated with the use of

remote sensing for this purpose.

2. Literature Review

To carry out carbon sink monitoring through remote sensing, the first step is to

determine the availability of satellite data and to develop a detailed strategy to acquire

the necessary imagery. This involves assessing the availability and appropriateness of

satellite data sets and creating a strategy for obtaining the images required for analysis

or use. Meteorological data and archived data from regularly observing satellites are

used to identify the most suitable date for satellite imagery acquisition. Weather data,

cloud patterns, and atmospheric stability are all important factors to consider when

selecting a satellite acquisition date. By examining these data sources, scientists can

determine periods with favorable weather conditions and minimal cloud cover, thus

maximizing the likelihood of obtaining high-quality satellite data for monitoring. (N.

Kosaka and Y. Kuwata, 2006).

At the heart of the remotely sensed image is the concept of pixel-level measurement,

which involves the capture of energy reflected off the surface of the Earth. Different

sensors capture a range of wavelength regions per pixel, known as band data, and some



sensors may only measure five to seven wavelengths, while others provide reflectance

data across a much wider range of bands, from 228 bands to 327 bands. This wide range

of bands results in a near-constant spectrum of data, enabling more precise and

comprehensive analysis of Earth's surface features. (Brown, et al., 1996).

The deployment of the MODIS (Moderate Resolution Imaging Spectro-Radiometer)

instrument on NASA's Terra satellite platform has initiated a new era of observations

that significantly enhance carbon cycle assessments. Satellite vegetation index data,

including “greenness” measurements obtained from the MODIS sensor, can be directly

integrated into ecosystem simulation models to estimate spatial variation in the

monthly net primary product (NPP), biomass accumulation, and litterfall inputs into

soil carbon pools. Furthermore, leveraging the relationship between leaf reflectance

properties and the fraction of absorption of photosynthetically active radiation (FPAR),

it is feasible to predict the global NPP of vegetation. These advancements in

satellite-based data and modeling techniques provide valuable insights for

understanding and analyzing carbon dynamics within ecosystems (Potter, et al., 2003).

In the following sections, we will explore the use of satellite data for the monitoring of

carbon sinks in forests, wetlands, and oceans. The review will emphasize the

importance of satellite monitoring approaches and their use in the analysis of carbon

storage dynamics and fluxes in these ecosystems.

2.1 Forest Ecosystem:

Ensuring that forest resources are properly monitored and managed is critical to

our ambition to reduce GHG emissions. Through comprehensive and long-term

investigations employing NOAA-AVHRR satellite imagery, a discernible correlation has

been observed. This correlation demonstrates the direct relationship between

heightened greenery, as quantified by the normalized difference vegetation index



(NDVI), and the corresponding increase in forest inventory metrics at the regional level

(Alonso, et al., 2006).

The detection of forest change can be difficult due to seasonal variations in reflectance.

Specifically, the visible portion of the electromagnetic spectrum has a higher reflectance

in spring and autumn than at the peak of the growth season. To enhance spectral

separation while minimizing similarity due to surface wetness, it is suggested to select

the summer or driest time of the year (Coppin, et al., 1996) (N. Kosaka, et al., 2006).

The choice of satellites to be used for this particular purpose has been widely discussed

in the literature. To acquire satellite data relevant to the study area, it is recommended

to reference meteorological records to select the most appropriate month with the least

amount of precipitation. This method of obtaining precise and pertinent data from

satellites is highly recommended. (N. Kosaka and Y. Kuwata, 2006) (Li, Xiangqian, et al.,

2021) (Ferchichi, Aya, et al., 2022).

Factors such as spatial resolution, temporal resolution, and the climate season in which

trees do not shed their leaves are essential to ensure that vegetation loss is not

misinterpreted. Careful attention to these factors helps prevent potential

misinterpretation of satellite imagery as indicative of vegetation loss (Kaul, et al.,2012).

VIS-NIR reflectance Data (VIS-NIR) is one of the data types that can be remotely sensed.

This data type is commonly used to derive the NDVI, which is a measure of vegetation

greenness. Panchromatic data is used for boundary delimitation and forest-type edge

detection, similar to aerial photos. Radar data measures surface texture and is valuable

for land cover mapping, ice monitoring, and terrain assessment. The choice of data

depends on specific study objectives and requirements (Brown, Kim, 1996).

The RVI (Ratio Vegetation Index) is highly sensitive to vegetation and widely used for

green biomass detection in dense vegetation. NDVI ranges from -1 to 1, with positive

values indicating increased greenery and negative values representing unvegetated

surfaces like urban areas, bare soil, water, and ice (Ferchichi, Aya, et al., 2022).



To monitor forests, multiple satellites are employed. The Full Resolution MERIS Images

provide a comprehensive set of satellite images for monitoring purposes

(González-Alonso, F., et al., 2005).

MODIS records data across 36 spectral bands and provides a spatial resolution of

between 250m and 1km, making it a popular tool for monitoring applications

(Verbesselt, Jan, et al., 2009) (González-Alonso, F., et al., 2005) (Jianya, Gong, et al.,

2008). SPOT5 HRG is a 10m spatial resolution sensor with four spectral bands,

commonly employed in the monitoring of projects that necessitate a higher spatial

resolution.(González-Alonso, F., et al., 2005). Landsat TM sensors enable the collection

of data to monitor a variety of elements, including land area and land use alteration.

(Kass, Green, et al., 1994). Indian Remote Sensing (IRS-P6) Linear Imaging Self-Scanning

Sensor (LISS-III) Images are frequently utilized for monitoring purposes (Kaul, et al.,

2007). Sentinel-2 obtains multispectral images with a spatial resolution of between 10m

and 60m. It provides a temporal resolution of approximately every 10 days, which

makes it an ideal tool for monitoring dynamic variations. (Ferchichi, Aya, et al., 2022).

These satellites have different spectral bands, spatial resolution, and temporal

resolution capabilities, enabling researchers to select the most suitable satellite for their

particular monitoring needs. MODIS is an essential tool in NASA’s earth-observing

capability, offering long-term, global monitoring with a 1-2 day temporal resolution and

250 m spatial resolution. It is commonly used in vegetation mapping & forecasting,

exceeding the capabilities of Landsat by capturing data across 36 spectral bands with

different spatial resolutions (Verbesselt, Jan, et al., 2009) (Li, Xiangqian, et al., 2021)

(Ferchichi, Aya, et al., 2022).



​​

Fig 1: Monitoring Vegetation through MODIS NDVI Data at 0.25 degrees resolution. (Imagery

produced by the NASA Earth Observations team using data provided by the MODIS Land

Science Team.)

Geoinformatics is also used in some research papers and satellite data has been used for

land use analysis and land cover changes (Kaul, et al., 2007). In addition to imagery,

existing digital data comprises forest soil, aerial survey, and land cover data, which are

incorporated into Geographic Information Systems (GIS) for detailed analysis. By

incorporating multiple spatial layers into GIS, dynamic analysis is possible that goes

beyond imagery alone. The pilot projects have addressed a wide range of topics,

including changes in forest vegetation, spatial and land-use alteration, analysis of pest

infestation, and monitoring of wetlands and bird populations, in some cases using field

data for validation. (Verbesselt, Jan, et al., 2009) (Kass, Green, et al., 1994).

The process of forest change forecasting begins with the collection of data, which is then

pre-processed to enhance the quality of the data. A change forecasting approach is then

implemented to anticipate and forecast alterations in the data collected. (Ferchichi, Aya,

et al., 2022). Various methodologies are employed for monitoring and forecasting forest

change. Ground truthing involves the collection of ground-based data to validate and



confirm remotely sensed information, regardless of resolution or source. This process

guarantees the accuracy and dependability of the data, thus providing a reliable basis

for analysis and interpretation across a wide range of applications. (Brown, Kim, 1996).

The Object-Based Method involves the analysis of satellite images at an object or area

level, rather than pixel level. This method is proposed for monitoring carbon sink

forests (N. Kosaka and Y. Kuwata, 2006).

Time series analysis is a method of examining temporal trends through the use of low

spatial resolution and high temporal resolution images, such as AVHRR or MODIS,

typically for vegetation dynamics or particular land cover changes. Common time series

analysis techniques include long-term serial analysis and the analysis of real-time image

sequences.(Jianya, Gong, et al., 2008). The process of unsupervised classification is used

in the automatic identification of land cover classes without the need for human input

or guidance. However, this process carries a heightened risk of errors due to the lack of

human oversight. As a result, the classification process can be subject to

misinterpretation and inaccuracy Supervised classification involves a combination of

classification and the incorporation of ground-based data and expert knowledge to

create a more accurate GIS map of forest cover. This approach yields a higher accuracy

compared to unsupervised learning (N. Kosaka and Y. Kuwata, 2006).

A Study conducted using CLC2000, a land cover dataset compared various regression

models. The research, using Simple Linear Regression (SLR) demonstrates a robust

correlation between the forest parameters and the average NDVI, although the RMSE

(Root Mean Square Error) suggests that predictions may be imprecise. Multiple Linear

Regression (MLR) models, which incorporate NFI 2 stem volume data, enhance

statistical parameters and yield more robust results. The predicted stem volume values

are calculated by multiplying the predicted values with the forested areas of the

CLC2000 “forest mask” as expansion factors. The provincial-level stem volume

increases are derived from these models (Alonso, et al., 2006). The selection of a



statistical approach is influenced by the issues of high dimensionalization, collinearity,

and excessive overfitting. In a study, the LASSO approach was chosen to overcome

these issues by reducing the RSS while limiting the regression coefficients, resulting in

the most suitable model for the data set.(Verbesselt, Jan, et al., 2009).

In another study supervised classification using the Maximum Likelihood Classifier

was performed using ERDAS Imagine software for land use land cover classification.

Accuracy assessment was conducted through pixel comparison with ground reference

data and Kappa analysis. Change detection revealed a decrease in forest area due to

seasonal leaf shedding. Settlements covered approximately 1.49% of the district area.

The classification methodology achieved high overall accuracies of 89% and 91.02% for

the March and November images, respectively, with Kappa statistics indicating strong

agreement (González-Alonso, F., et al., 2005) (Kaul, et al.,2012).

Vegetation indices, of which NDVI is the most popular, play an important role in the

analysis of vegetation using remotely sensed data. Vegetation’s reflectance spectrum is

affected by factors like chlorophyll, cellular structure, water content, etc. NDVI

calculates the vegetation index specifically by taking into account the chlorophyll

absorbance and the near-infrared reflectance (NIR) of each spectrum. This allows for

efficient vegetation health and dynamics assessment and provides valuable insights into

ecosystem dynamics and vegetation conditions ( Brown, Kim, 1996) (González-Alonso,

F., et al., 2005).

In one of the studies, satellite images were prepared for analysis by geo-coding, terrain

correction, and resampling. Various algorithms, such as image differencing and

vegetation index differencing, were used to detect changes in vegetation cover. Band 7

was selected as the primary analysis band due to its sensitivity to vegetation changes.

Challenges like shadows, water level variations, and different vegetation types required

additional processing and modeling. The results were converted into polygons



representing vegetation loss, gain, and no change for further analysis (Kass, Green, et

al., 1994).

An extensive study was done by Kim Brown on monitoring carbon storage in

agro-forestry projects. The paper suggested various methods to study change in forests.

Image differencing is a highly utilized and effective change detection algorithm that

operates by subtracting precisely registered imagery from one date to another. By

comparing pixel values, this technique reveals areas of change through positive and

negative values, while zero values denote regions that have remained unchanged. With

its successful application across diverse geographical environments, image differencing

is a valuable tool for detecting and analyzing temporal transformations. Multitemporal

linear data transformations employ two widely utilized techniques: Principal

Component Analysis (PCA) and the Tasseled Cap transformation. These

transformations effectively condense the information on subtle variations in the forest

canopy into lower components, enabling the detection of changes. The focus is on the

capture and analysis of essential changes through the use of PCA and its Tasseled Cap

transform, which allows for the identification and evaluation of temporal variations in

forest cover. Image regression is a powerful mathematical modeling technique, is

employed to establish the relationship between two multidate images encompassing the

same geographical area. The objective is to identify a linear correlation between

corresponding pixels in the two images across all electromagnetic spectrum bands. By

analyzing the pixel values and their interdependencies, image regression provides

valuable insights into the quantitative association between the two images, enabling

further analysis and interpretation of temporal changes within the studied area (Brown,

Kim, 1996).

It is suggested that neural networks outperform conventional methods in detecting and

predicting changes (S. Gopal and C. Woodcock, 1996). Deep learning (DL) methods,

including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),



and Long-Short Term Memory Networks (LSTM), have demonstrated greater

performance in vegetation forecasting and yield prediction compared to traditional

machine learning (ML) methods like LASSO, random forest (RF), and support vector

machine (SVM). Evaluation metrics used include RMSE, R2, and Mean Absolute

Percentage Error (MAPE). It is important to note that the commonly used parameters

for vegetation forecasting include NDVI data, EVI data, Land surface temperature data,

soil information, meteorological information, and crop information It is essential to

select a study area that is suitable for the study, concentrating on areas with a high rate

of vegetation loss and dynamic alterations due to climatic factors such as humidity,

rainfall, and vegetation. (Ferchichi, Aya, et al., 2022).

High-resolution satellite imagery is useful for monitoring carbon sink preservation

activities (N. Kosaka and Y. Kuwata, 2006). Change detection implementation is

relatively easy and cost-effective, with the potential for in-house use (Kass, Green, et al.,

1994). Remote sensing data, offers valuable insights into land use and land cover

changes, particularly for irrigation projects and spatial management (Kaul, et al.,2012).

Factors influencing the accuracy of change detection, include geometric registration,

ground reference data quality, landscape complexity, methods used, analyst skills, and

time and cost limitations ( Jianya, Gong, et al., 2008).

Agroforestry projects are subject to a variety of challenges when it comes to monitoring,

including weather (rain and cloud), phenological variation, security concerns, species

identification (excluding carbon sequestration), costs associated with data collection, the

frequency of data acquisition, and the requirement for data to be collected on-site

(Brown, Kim, 1996). Rugged terrains can hinder biomass detection using VIS-NIR

techniques due to shadowing and reflected light (Kass, Green, et al., 1994). It is essential

for the remote sensing research community to focus on improving comprehension of

the process of change detection and to align applications with appropriate techniques.

(Coppin, et al.,1996).



2.2 Wetlands:

Remote sensing has been demonstrated to be a useful asset in the field of

wetlands research and mapping, allowing for the identification, categorization, and

monitoring of a variety of wetlands. It provides cost-efficient solutions for large

geographical areas, especially in developing nations with limited resources and limited

access to data. Satellite imagery and aerial photography complement each other in

providing valuable information for wetland mapping. Satellite radar data, such as

ERS-1, JERS-1, and RADARSAT, have advantages in remote sensing, including

all-weather and all-day capabilities. SAR data from ERS-1 and JERS-1 have been

particularly useful for wetland studies, allowing differentiation of vegetation

communities based on canopy structure, soil moisture, and flooding. The accuracy of

wetland classification is improved by the use of multi-time data and supplementary

information. Several major satellite systems have been extensively utilized to study

wetlands, including Landsat MSS, Landsat TM, and SPOT. In addition, other systems

like NOAA AVHRR, IRS-1B LISS-II, and radar systems such as JERS-1, ERS-1, and

RADARSAT have also been employed for wetland research. For SAR data acquisition

and processing, a specific mode called Wide Ultra-Fine (U2W2) is recommended and

used (Ozesmi, et al., 2002). Datasets such as MODIS Land Cover Classification also

provide data for permanent wetlands (Zeng T et al., 2015).



Fig 2: Land Cover Dataset created from MODIS data classifies various types of land covers

including permanent wetlands. (Imagery produced by the NASA Earth Observations team using

data provided by the MODIS Land Team and the Land Processes Distributed Active Archive

Center.)

Synthetic Aperture Radar (SAR) systems are valuable for mapping and monitoring

wetland resources. SAR data is becoming increasingly accessible and has been

demonstrated to be capable of mapping a variety of wetland components, making it an

essential element in wetland monitoring systems. SAR backscatter measurements

provide information about different scattering types, including specular scattering,

rough scattering, volume scattering, and double-bounce or dihedral scattering (White,

Lori, et al., 2015). For wetland mapping, aerial photography is the preferred method,

however, satellite data can be utilized for continuous monitoring, change detection, and

the updating of detailed maps (Ozesmi, et al., 2002). Grey-level thresholding is

commonly used to map surface water, but it is suitable only for calm open water with a

specular backscatter response. Polarimetric decompositions like Freeman-Durden and

m-χ approaches can map flooded vegetation, while curvelet-based change detection

reduces noise for improved detection of flooded vegetation (White, Lori, et al., 2015).



Computer-facilitated classification techniques, such as unsupervised clustering and

supervised maximum likelihood are widely employed. Other techniques that improve

wetland classification include pixel-based classification, object-based classification,

spectral mixture analysis, and index-based classification.

In a study by Kaplan, et al., following the image processing process of Sentinel-2,

object-based classification (OBIA) was applied. OBIA is an interactive algorithm used to

group pixels into objects. Spectral properties of objects located within wetlands were

identified. Decision tree rules were employed to classify wetland objects as distinct from

other Land Cover objects. Any wetland objects that were not within the class of

classified wetlands were included in the class of wetlands if their boundaries did not

extend beyond the class of wetlands previously classified. The index-based classification

was also studied in the same paper. It distinguishes wetlands and their contents from

other land covers. The NDVI analysis separates vegetated areas from vegetation-water

mixtures, while the NDWI index is used to identify water areas. A threshold of -0.15 for

NDWI is effective for extracting water pixels, including those with vegetation.

Index-based classification provides valuable information on vegetation density, changes

over time, and open water bodies in wetlands (Kaplan, et al., 2017).

Various methods have been studied to classify wetlands. Rule-based classifiers have

been utilized in various wetland classification studies. For instance, a rule-based GIS

model was developed to identify forested wetlands in Maine using ancillary data and

Landsat TM imagery. Another study in northern Wisconsin employed a rule-based

expert system using topographic position, soil texture, and Landsat TM data. A simple

rule-based GIS model was also used in Maryland and Delaware to classify wetland and

upland vegetation types. The findings of these studies indicated that a rule-based

classifier can achieve a high level of classification accuracy, however, it may require a

greater amount of time and expertise than other methods. Furthermore, the inclusion of

ancillary data when correctly registered to satellite images can significantly enhance the



classification accuracy of a rule-based classification system. The classification of each

pixel under Maximum Likelihood assigns it to the class most likely to represent that

class, taking into account its spectral properties. Unsupervised clustering groups pixels

with similar spectral values into clusters without prior knowledge of class labels. The

analyst can then assign class labels to the clusters based on additional information or

ancillary data. Classifications that combine supervised and non-supervised methods are

known as hybrid classifications. One of these methods involves the use of clustered

algorithms to generate statistical data, which is then incorporated into a classification

model for the entirety of the study site. Another method referred to as guided

clustering, identifies clusters for particular land cover classifications. Both of these

methods are pertinent to wetland studies, as the vegetation types of wetlands are

subject to a wide range of variability. Principal Component Analysis (PCA) was utilized

in wetland classification. The first three principal components (PC1, PC2, PC3) were

extracted from the data. PC1 emphasized vegetation differences, PC2 highlighted

wetness differences, and PC3 distinguished wetlands from uplands. The wetland

classification achieved an overall accuracy of 72%. However, by combining similar

wetland classes, the accuracy increased to 81% (Ozesmi, et al., 2002). The pixel-based

classification methodology incorporates both supervised and unsupervised methods.

The unsupervised methods employed the K-Means method, which consists of twenty

classes, which are classified according to their reflectance characteristics. On the other

hand, the supervised classification included seven classes, as well as the Use of

Maximum Likelihood Parametric Rule to differentiate between wetlands and other land

cover types. The combination of object-based classification and index-based

classification facilitates a more precise and comprehensive characterization of wetlands,

allowing them to be distinguished from other land covers and their contents. This

combination of methods improves the overall results obtained. The mapping and

monitoring of wetlands showed excellent results, with a high agreement between the



classified wetland areas and the ground truth data, as indicated by a kappa coefficient

of 0.95 (Kaplan, et al., 2017). The rule-based system achieved an accuracy of 90% for all

changed wetlands, while the accuracy for the five dominant NWI systems (PFO, PEM,

PUB, PSS, PAB) ranged from 87% to 94% (Ozesmi, et al., 2002).

2.3 Ocean Ecosystem:

The ocean plays a pivotal role in facilitating the movement of carbon across the

planet, boasting a considerably higher carbon content compared to the atmosphere.

This carbon exchange between the ocean and atmosphere occurs gradually over

extended periods. However, uncertainties arise regarding the implications of climate

change on this vital carbon reservoir, stemming from alterations in ocean currents,

chemical dynamics, and the equilibrium of marine ecosystems. Grasping these

transformations holds paramount importance in forecasting the ocean's aptitude for

carbon regulation and its potential impact on forthcoming climate patterns (Carbon

Cycle | Science Mission Directorate, 2023).

The MODIS instrument has also been used to monitor marine ecosystems and has been

utilized in a variety of applications, including sea surface temperature monitoring

(Saleh AK, Al-Anzi BS, 2021).



Fig 3: Monitoring Sea Surface Temperature through MODIS SST Data at 0.25 degrees

resolution. (Imagery processed by the NASA Earth Observations (NEO) team in collaboration

with Gene Feldman and Norman Kuring, NASA OceanColor Group.)

Satellite imagery offers the potential to track and evaluate the health of coastal waters

due to its expansive spatial coverage and enhanced temporal resolution. The traditional

methods of water quality data collection, such as in-situ field sampling, anchored

instruments, and ship-based measurement, are limited in time and space (Bierman,

Paul, et al., 2011). Microwave remote sensing techniques, including radar altimeters,

scatterometers, and Synthetic Aperture Radars (SAR), can measure wave characteristics

and surface wind speeds. SAR imagery is particularly useful for imaging at night or

during cloudy weather conditions and can provide information on wave direction and

wavelength (Clark, Chris D, 1993).

Recent scientific discoveries have brought attention to the important role of sea ice in

maintaining the balance of carbon dioxide on Earth. The Arctic is getting warmer,

causing summer sea ice to shrink by about 30 percent, and winter sea ice is getting

thinner due to the warming conditions. It turns out that contrary to what we used to

think, sea ice in the Arctic actually helps soak up CO2 from the air. This happens



because of a two-step process that takes place within the ice. In winter, the ice forms

calcium carbonate crystals that release CO2 into the cold seawater, which then sinks

deep into the ocean. The calcium carbonate gets trapped in the ice. When the ice melts

in summer, the dissolved calcium carbonate releases CO2 into the ocean, effectively

pulling CO2 from the air and helping to get rid of it. These findings show how sea ice in

the Arctic is closely connected to the levels of carbon dioxide in our atmosphere. This

new understanding is important for climate research, as it helps us grasp the bigger

picture of how different parts of our planet work together to regulate our environment

(University of Southern Denmark, 2014).

In the colder months, dust and nutrients tend to gather on the surface of sea ice. As the

ice starts melting in the spring, these nutrients are released into the ocean. The Southern

Ocean is believed to be responsible for around half of this nutrient release. If there's less

sea ice, this process could be disturbed, affecting how productive the ocean is. This, in

turn, might impact the ocean's capacity to store carbon, which could potentially speed

up the rate of climate change. Some studies even suggest that stronger winds could mix

up the ocean waters, causing carbon-rich currents from deep within the ocean to rise to

the surface. This could lead to more CO2 being released into the air (Chelsea Harvey, et

al., 2020).



Fig 4: Monitoring Sea Ice Cover through MODIS SEA ICE Data at 4km resolution

The MODIS Sea Ice and Ice Surface Temperature (IST) datasets offer valuable insights

into the temperatures of ice surfaces in our oceans. These datasets are categorized into

Level 2 and Level 3 products, delivering information on ice surface temperature at

distinct resolutions: 1-kilometer resolution for Level 2 and 0.5-degree resolution for



Level 3, spanning across the world's oceans. Furthermore, each pixel within these

datasets comes with an associated quality-assessment parameter, enhancing the

reliability of the information provided. The Level 2 product is generated on a daily

basis, offering comprehensive coverage of both day and night conditions every 24

hours. This extensive dataset empowers researchers and scientists with critical data to

advance our understanding of ice surface temperatures and their implications on the

world's oceans. The MODIS Sea Ice and Ice Surface Temperature (IST) datasets provide

different products with varying levels of detail and resolution. These datasets offer

essential information about sea ice extent and IST. The Level 2 Swath 1km dataset

presents this data with a resolution of 1 kilometer. Moving to Level 3, the Global 1km

EASE-Grid Day and Night datasets show sea ice extent details with a 1-kilometer

resolution. For the Aqua satellite, the Aqua Sea Ice Extent and IST Daily L3 Global 4km

EASE-Grid Day dataset gives daily sea ice extent and IST data with a resolution of 4

kilometers. Collectively, these datasets give researchers crucial tools to study sea ice and

IST at various levels of detail and resolution, deepening our understanding of polar

regions and their connections to the environment (MODIS Web, n.d.).



Chlorophyll-a:

The quantification of chlorophyll-a concentration in aquatic environments serves as a

crucial tool in locating and depicting the distribution of phytoplankton populations.

These microscopic organisms play a pivotal role in the marine ecosystem by absorbing

carbon dioxide, which is essential for their photosynthetic activities. By measuring the

levels of chlorophyll-a, researchers gain access to a wealth of valuable information that

contributes to a comprehensive understanding of oceanic health and ecological

dynamics. This insight enables scientists to monitor and assess the delicate balance of

these intricate systems, thereby advancing our comprehension of the broader

environmental implications (Chlorophyll, NASA Earth Observatory, n.d.).

Levels of chlorophyll-a tend to fluctuate with the seasons, with the highest

concentrations occurring during wet seasons as opposed to dry seasons. Coastal areas

tend to have higher concentrations than those found in open-sea regions. The spatial

arrangement of Chlorophyll-a is influenced by salinity and total suspended solids (TSS)

distribution, with salinity displaying an inverse relationship, while TSS shows a direct

correlation. Salinity and TSS are essential oceanographic parameters that play a

significant role in determining the geographic prevalence of phytoplankton and

chlorophyll-a. (Buditama, et al. 2017).

Utilizing remote sensing using Landsat 8 OLI Imagery facilitates the identification of

chlorophyll-a, salinity, and TSS levels in ocean environments. Spatial and temporal

examinations, including descriptive statistical analysis, superimposed maps, and

regression examinations, disclose associations between variables, with a particular

emphasis on the rainy and arid months from 2014 to 2015. Significantly, levels of

chlorophyll-a display a noticeable coastal impact, reaching their highest points in

proximity to estuaries because of the introduction of nutrients through runoff. Across

both rainy and arid months, the relationship between salinity and chlorophyll-a



concentration consistently demonstrates negativity or an inverse linear pattern

(Buditama, et al. 2017).

A study obtained Chlorophyll-a levels through the analysis of Sentinel 2A satellite

imagery. In May 2017, concentrations varied from 0.01 to 5.5 µg/L, whereas in May

2018, the range expanded to encompass values from 0.028 to 8.00 µg/L (Kaymaz, et

al.,2018). In the context of the May 2019 bloom event, as noted by a study, a notable

positive correlation emerged between the concentration of chlorophyll-a pigments in

the upper water column and the influx of meltwater originating from sea ice. The retreat

and thinning of sea ice had the effect of intensifying exposure to solar radiation, thereby

providing a stimulus for primary productivity. An essential factor was the introduction

of nutrients, particularly iron, into the polar marine ecosystem through the meltwaters

originating from both sea ice and glaciers. This nutrient input played a crucial role in

nurturing the proliferation of marine life in the region. The study focused on exploring

the intricate interrelationships among various factors, including satellite-derived

chlorophyll-a data, the fraction of freshwater (FWF), sea surface salinity (SSS), solar

insolation, and proximity to the sea ice edge. This investigation contributed to a deeper

understanding of the complex dynamics governing the observed bloom phenomenon.

The in-situ data analysis highlighted a strong connection between pigment

concentrations near the surface and the salinity levels in the upper water column.

Specifically, reduced salinity resulting from sea ice melt was associated with higher

pigment concentrations, while greater salinity corresponded to lower pigment levels.

Within the marginal Arctic Ocean, instances of heightened phytoplankton concentration

often coincided with diminished sea ice extent. Notably, storm events and wind-driven

mixing, prevalent in diverse Arctic areas, displayed a correlation with elevated

chlorophyll levels (Andrew P., et al., 2023).



Fig 5: Changes in chlorophyll concentrations can be studied with the help of remote sensing data

from MODIS

Satellite data sourced from instruments such as SeaWiFS and Advanced Very

High-Resolution Radiometer (AVHRR) offer a valuable avenue for exploring the

interplay between Chlorophyll (Chl) levels—indicative of phytoplankton biomass—and

sea surface temperature (SST). This connection, once established, enables satellites to

potentially quantify the population of marine organisms worldwide and provide

insights into how fluctuations in global temperatures impact the abundance of marine

life (Kavak, et al., 2012).



Various Methodologies Used for Analyzing Monitored Ocean Data:

Cluster analysis, Discrimination Analysis, Factor Analysis, Principal Component

Analysis, Self-Organizing Map (SOM), Semivariogram analysis, and Geographically

Weighted Regression (GWR) are robust analytical tools with applications extending

beyond marine contexts, enabling the investigation of intricate structures and

relationships within multivariate datasets. Cluster analysis serves to classify objects

based on their similarities or differences, serving both exploratory and validation

purposes. Discriminant analysis is adept at deciphering the importance of variables and

grouping objects. Factor Analysis and Principal Component Analysis elucidate

underlying dataset structures and reduce data complexity. The Self-Organizing Map

(SOM) efficiently distills patterns from expansive datasets, notably evident in marine

surface temperature imagery. Semivariogram analysis quantifies spatial variability,

facilitating interpolation and prediction in unsampled areas. Geographically Weighted

Regression (GWR) diverges from traditional regression by accommodating spatially

varying relationships among variables, yielding insights into localized patterns

(Bierman, Paul, et al., 2011).

Cubist Regression Trees is a widely used rule-based algorithm in remote sensing

regression studies. It utilizes a modified regression tree system with instance-based

criteria, generating rule-based multivariate regression output. Unlike CART-based

regression trees like Random Forest (RF), which produce constant values at each final

node, Cubist provides more interpretable rule-based results. Cubist also boasts a shorter

run time compared to CART-based regression trees. In cases where multiple rules

overlap, the final prediction is obtained by averaging the results from the multiple

rule-based multivariate regressions, enhancing the accuracy and interpretability of the

model (Kim, Yong Hoon, et al., 2014).



Machine learning approaches, such as Random Forest (RF) and Support Vector

Regression (SVR), have been evaluated for estimating chlorophyll-a (chl-a) and

Suspended Particulate Matter (SPM) concentrations using GOCI satellite data (Kim,

Yong Hoon, et al., 2014).

In a study to determine chl-a concentration, support vector regression (SVR) was

employed to evaluate various kernel functions. The radial basis kernel function was

selected due to its higher performance. To identify the main parameters of the radial

basis kernel, a Grid Search Optimization algorithm was implemented, which enabled an

efficient and precise selection of parameters, thereby increasing the efficacy of SVR. SVR

demonstrated the strongest correlation with chl-a concentration, yielding R2 values

between 0.68 to 0.86, along with the smallest RMSE and cross-validation RMSE. (Kim,

Yong Hoon, et al., 2014).

A study utilized Chlorophyll (Chl) data from the Black Sea, obtained through the

SeaWiFS 8 Day Global 9 km Chl images processed using the OC4v4 algorithm. Chl

concentrations were conservatively estimated by dividing the resulting values by two.

Sea surface temperature (SST) data was obtained from MODIS with a resolution of 1

km. ERMapper 5.2 software was used to calculate SST for the Black Sea region, and

GES-DISC Giovanni facilitated data access and processing. The study documented the

Black Sea SST variability over 15 years, which followed a sine curve with maximum

temperatures in summer and minimum temperatures in winter. Due to the depth

difference between the in situ and satellite measurements, the skin temperature

measured by satellite was slightly higher than the in situ measurements. The Chl

concentration revealed seasonal variations, with a decrease between November and

February and an increase between January and September, which was behind the SST

by approximately one month. An analysis of the correlation between SST concentration

and Chl concentration over the period 1997-2008 showed a 60% positive correlation,

indicating a strong correlation between SST changes and Chl concentration changes.



Other elements, such as the surface flow zones, the substrate concentration, the

temperature variations, and the oxygen content, also influence biomass production in

the Black Sea. (The Kavak, et al., 2012).

Challenges and Future Perspectives:
The utilization of new technologies, particularly remote sensing for

high-resolution estimates of above-ground biomass (AGB), has the potential to decrease

uncertainty and enhance global knowledge of carbon exchanges. However, satellite

technological advancements require time to become operationally ready for forest cover

and carbon stock monitoring. LiDAR is an emerging technology in the field of forest

carbon measurement, however, it is facing difficulties in the transition from

aircraft-based to satellite-based applications. Field in-situ measurements are essential

for the calibration and validation of satellite-derived AGB estimates, and satellite and

field integration at various scales is beneficial. Remote sensing helps in the identification

of areas with small-scale disturbance and legacy inventories, thus improving inventory

models and sampling performance. Airborne (or satellite) LiDAR informs ecosystem

models and estimates carbon stocks at various spatial scales. Establishing consistent

forest attributes with remote sensing observations provides direct aboveground carbon

stock estimates. The ability to accurately estimate biomass on a large scale is limited by

the availability and cost of LiDAR data, however, the advancement of photon counting

LiDAR technology, as well as space-based LiDAR missions, has the potential to expand

the scope of coverage. Furthermore, the integration of LiDAR technology with radar

and remote sensing data sources has the potential to improve biomass mapping (Goetz,

et al., 2011).

Remote sensing of carbon can be divided into passive detection methods and active

detection methods, depending on the source of the detection. A proposed approach is to

construct a multi-purpose and comprehensive satellite system for carbon monitoring in



low Earth orbit (LEO-GEO) for increased accuracy, resolution, and multidimensional

carbon monitoring. Traditional inventory statistical methods for carbon assessment are

based on the Intergovernmental Panel on Climate Change (IPCC) guidelines and

national data on various industries (Meng, Guang, et al., 2022).

Remote sensing is subject to difficulties in the estimation of carbon stocks and the

monitoring of temporal variations due to the limitations of remote sensing maps and

emission-reporting systems. LiDAR and InSAR are the dominant technologies for the

mapping and monitoring of biomass at local to regional levels, however, LiDAR is

subject to cloud limitations (Goetz, et al., 2011). For future EO missions, the focus

should be on increased revisit frequency, improved spatial resolution, and multispectral

observations, taking advantage of Artificial Intelligence's capacity to process large EO

data sets and address various coastal environmental issues (Melet, Angelique, et al.,

2020).

Currently, the availability of very high-resolution remote sensing data for monitoring is

limited. The temporal frequency of data collection and updation of many satellites are

not favorable for near real-time or real-time monitoring of carbon sinks. While variables

such as NDVI can be useful at low resolution, for disturbances such as forest fires, very

high-resolution monitoring and reporting are necessary for fast mitigation.

NASA’s PACE Mission, set to be launched in 2024 (NASA PACE - Timeline, n.d) aims to

study Ocean ecosystems at a high resolution. The mission aims to monitor various

ocean-related data such as chl-a concentrations, phytoplankton pigment concentrations,

and particulate organic and inorganic carbon concentrations at up to 1km resolution.

Access to high-resolution data can be crucial in monitoring carbon sinks (NASA PACE -

Data Products Table, n.d.)



Case Study: Using MODIS NDVI data to Monitor

the Amazon Rainforest

The Moderate Resolution Imaging Spectroradiometer (MODIS), a renowned satellite

sensor, is a pivotal component aboard the Terra and Aqua satellites. These satellites,

classified as earth observation systems (EOS), hold significance in the realm of

environmental monitoring. Both Aqua and Terra satellites play a vital role in

accumulating crucial data related to the Earth's climate, encompassing atmospheric

conditions, land conditions, snow, and ice formations, oceanic characteristics, and

energy balance. This comprehensive data serves as a cornerstone in the ongoing efforts

to address the challenges posed by climate change, providing invaluable insights into

the intricate interplay of various environmental factors and significantly contributing to

our understanding of global climatic dynamics (Terra| The EOS Flagship, (n.d)).

MODIS offers an expansive array of datasets that encompasses Vegetation indices such

as the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation

Index (EVI), Land Cover data, Sea Surface Temperature (SST) measurements,

Chlorophyll-a concentration (Chl-a) estimations, Active Fires detection, Burned Area

delineation, and Leaf Area Index assessments, among several others. This diverse

collection of datasets serves as an invaluable resource for comprehensively studying

and analyzing diverse environmental phenomena and facilitating a multifaceted

understanding of various ecological processes and global climatic dynamics.

The MODIS NDVI dataset offers a versatile range of resolutions, spanning from the

finest level of detail at 250 meters to broader perspectives at 500 meters or 1 kilometer.

Particularly relevant for macro-scale vegetation observations, the resolution of 0.05

degrees emerges as an appealing choice. This degree of resolution provides a



comprehensive view, enabling a nuanced understanding of vegetation trends and

dynamics across extensive geographical areas. This provides a comprehensive and

comprehensive view of vegetation trends and dynamics across large areas.

The selection of the appropriate MODIS NDVI resolution is contingent upon the specific

research objectives and the scale of analysis necessary to achieve them. When

conducting detailed regional or local studies, finer resolutions like 250 meters are

advantageous, as they facilitate in-depth examination of specific areas. Conversely, for

broader macro-scale global analyses aimed at comprehending large-scale vegetation

patterns and trends, coarser resolutions such as 0.05 degrees are preferred. This

deliberate choice of resolution ensures that the analytical approach is aligned with the

research goals, optimizing the precision and relevance of the findings.

The Amazon Rainforest stands as the Earth's most extensive rainforest, enveloping a

vast expanse of nearly 6 million square kilometers. This unparalleled ecological realm

hosts a diverse array of species, including some that exist exclusively within its

confines. Furthermore, the Amazon Basin assumes a pivotal role as one of the most

substantial carbon sinks on our planet, playing a crucial role in mitigating carbon

dioxide levels. The intricacies of studying this remarkable ecosystem, however, have

been complicated by the prevalent cloud cover and frequent meteorological

disturbances characteristic of the region. Despite the scientific challenges posed by these

environmental factors, understanding the Amazon Basin's ecological dynamics remains

a profound pursuit, with potential ramifications for global environmental management

and conservation strategies.

The evolution of satellite technology, computing capabilities, and cartographic

techniques has ushered in a new era of comprehensive exploration of the Amazon

rainforest. Enabled by these advancements, researchers have gained the capacity to

delve into intricate details of this iconic ecosystem. A noteworthy illustration is a study

undertaken by NASA, which unveiled a stark decline in forest cover within the Amazon



rainforest. This decline was attributed to the extensive transformation of forested

regions into agricultural zones and pastures. This revelation underscores the profound

impact of human activities on this vital ecological domain.

The application of a continental-scale mapping methodology carries the potential to

obscure the comprehensive magnitude of changes transpiring within the Amazon

rainforest. When scrutinized at a broader analytical level, several deforestation trends

may elude recognition, underscoring the importance of adopting more finely-grained

assessments. The recent decades have borne witness to an unprecedented level of

transformation within this pivotal biome, largely attributed to human-driven activities.

Remarkably, spanning the years since the 1970s, an area exceeding one-sixth of the

rainforest's total expanse has been subjected to clearance. The ascent of satellite

technology has notably facilitated the meticulous examination of deforestation patterns

across extended temporal scopes, enabling the discernment of evolving trends and the

exploration of underlying causal factors. Illustrative of this phenomenon at a regional

scale, the Brazilian state of Para presents an instructive case study. Along the trajectory

of the BR-163 highway, the vegetation of the rainforest has experienced a stark change.

This transformation serves as a representation of the broader narrative unfolding across

the larger rainforest expanse. This detailed investigation underscores the pivotal role of

satellite technology and localized case studies in unraveling the multifaceted dynamics

shaping the transformation of the Amazon rainforest (Mapping the Amazon, 2019).

Satellite imagery serves as a valuable tool for identifying deforestation hotspots, while

the utilization of Normalized Difference Vegetation Index (NDVI) data presents an

opportunity to quantitatively assess vegetation loss. For our research objectives, we

acquired data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS)

instruments, hosted on both the Terra and Aqua satellites. This data collection was

centered on February, spanning multiple 5-year intervals, and captured at a resolution



of 0.05 degrees. This approach facilitated the examination of NDVI variations on a

macroscopic scale. The collected data underwent systematic processing, employing a

suite of analytical tools including Python, xarray, geopandas, rasterio, gspatial_plot,

rioxarray, and gdal. Furthermore, to ensure harmonized comparability of NDVI values,

a scaling process was applied, standardizing the values within the range of -1 to +1. This

standardization, derived from the scale factor furnished by metadata, engendered a

uniform analytical foundation for the refined NDVI values. After this scaling, the values

were meticulously classified into distinct categories based on divergent NDVI ranges,

each signifying specific land cover types (Laksono et al., 2020).

Fig 6: Binned NDVI data of the world in 0.05-degree resolution

Using 0.05-degree data, we focused on the South American continent and compared

year-to-year NDVI data to gain insight into vegetation dynamics and changes over time

in this area.



Fig 7: Comparison of 2020 NDVI with 2023 NDVI

The process of binning NDVI data reveals limited discernible changes. To enhance the

detection of alterations within NDVI, a differential approach was employed. This

technique involves the application of NDVI differencing, whereby the NDVI values of

distinct periods are subtracted from one another. This differential analysis typically

spans consecutive years or specific time intervals, facilitating the identification of more

nuanced changes that might otherwise remain concealed through conventional binning

methods. This differential strategy not only enriches our capacity to detect alterations in

NDVI but also provides a more detailed perspective on the evolving dynamics of

vegetation changes over time.



Fig 8: NDVI difference between 2020 and 2023

The process of calculating differences brings forth a diverse array of information that

might be challenging to identify or unattainable through the sole analysis of NDVI data.

Furthermore, when we contrast the NDVI values of the most recent year with the

preceding year, we gain access to a comprehensive dataset that spans a range from

negative to positive values. Negative values indicate vegetation reduction, signifying a

decline within certain regions compared to the preceding year. On the other hand,

positive values indicate vegetation increase within specific areas, underscoring growth

in contrast to the preceding year. This approach allows us to grasp both declining and

increasing vegetation trends, enriching our understanding of the ecological shifts

occurring over time.



To track more subtle changes in vegetation, the implementation of higher-resolution

MODIS data proves instrumental. In the context of this case study, the investigation

harnessed 250m-resolution MODIS NDVI data. This dataset was collated for the period

spanning October 2005 to 2022, with data points collected at 5-year intervals. The study

was executed utilizing the MOD13Q1 product sourced from MODIS Terra. The

geographical focus centered on the vicinity near BR-163 in Brazil, located within the

broader South American region. Through this localized analysis, the study illuminated

the efficacy of employing NDVI data for monitoring vegetation dynamics. This was

achieved through a comparative exploration of the NDVI values from the year 2022

with those from preceding years, thereby enabling the discernment of evolving trends

and changes over successive 5-year periods. This approach underscores the utility of

NDVI data in effectively tracking and comprehending the nuances of vegetation

alterations within a specific geographic context.

The dataset encompassed NDVI data pertinent to the designated region, facilitating the

identification of fluctuations in vegetation cover. Through the utilization of NDVI

values spanning the range of approximately 0.2 to 0.9, a plot was generated, leveraging

specific NDVI values correlated with distinct latitudinal and longitudinal coordinates.

This graphical representation effectively portrayed variations in vegetation loss and

gain. The ensuing depiction, vividly highlights discernible trends that are indicative of

evolving vegetation dynamics across time. The analysis of MODIS NDVI data,

conducted within the geographic sphere proximal to BR-163 in Brazil, spanning the

interval from October 2005 to October 2022, unveils insights concerning the shifts in

vegetation. This study underscores the utility of MODIS data in the realm of monitoring

carbon sinks and studying the intricate dynamics of vegetation, accentuating the

potential of satellite-derived data in addressing ecological inquiries.



Fig 9: Deforestation, Amazon Rainforest, State of Pará



The visual representations presented in the aforementioned plots offer a substantive

repository of insights into the intricate dynamics of vegetation degradation and

deforestation trends. While similar trends can be identified through the analysis of

satellite imagery, the unique advantage of NDVI data lies in its capacity to quantify

vegetation degradation and ascertain the magnitude of vegetation loss. To undertake a

more precise assessment of the progressive decline in vegetation over time, an analysis

was conducted, contrasting the 2022 NDVI data with the NDVI data from the years

2005, 2010, 2015, and 2020. This sequential exploration provides insights for

understanding the trajectory of vegetation loss and underscores the valuable role of

NDVI data in gauging ecological changes over temporal intervals.

Fig 10: NDVI differences reveal loss of vegetation in specific areas with respect to time



Through the calculated differences, a more granular understanding of the exact locales

experiencing vegetation loss over temporal spans becomes evident. As we analyze the

changing vegetation across successive years and contrast the discrepancies with the

NDVI data of 2022, a conspicuous trend emerges: the amplitude of vegetation loss

continues to increase. This discernible pattern serves as an indicator of ongoing

deforestation activities within this specific region. The amalgamation of NDVI data

alongside the derived differences equips us with the means to trace and quantify the

extent of vegetation loss, thereby enabling effective surveillance of deforestation trends.

This comprehensive approach, in turn, empowers us to formulate preventive and

rehabilitative strategies aimed at conserving and restoring ecological equilibrium.



Conclusion

This study highlights the vital role played by natural carbon sinks, including

forests, wetlands, and oceans, in mitigating the negative impacts of increased carbon

dioxide levels in the Earth's atmosphere. The intricate connections between these

ecosystems and carbon emissions are crucial for maintaining balance in the global

carbon cycle. The integration of advanced remote sensing satellites, such as MODIS,

Landsat, and Sentinel, has ushered in a new era of better understanding vegetation

dynamics.

The main focus of this research was to practically apply satellite data, particularly the

MODIS NDVI Data Product, to monitor changes in forest dynamics. By carefully

collecting data from NASA's MODIS instruments on Terra and Aqua satellites, using a

0.05-degree resolution approach, and employing analytical tools, the study explored

variations in NDVI on a larger scale. The collected data were standardized and grouped

based on diverse NDVI ranges representing different land cover types. Through a

differential analysis method that subtracted NDVI values from different years, the

research revealed subtle changes that may not be evident through traditional

approaches. This approach provided comprehensive insights into both declining and

increasing vegetation trends, enhancing our understanding of how ecological changes

unfold over time.

The study concentrated on the South American continent, specifically the region near

BR-163 in Brazil, using higher-resolution MODIS NDVI data to investigate vegetation

dynamics. The research demonstrated the practical value of using satellite-derived

NDVI data to monitor vegetation dynamics within specific geographic contexts. By

focusing on local analyses, the study highlighted the effectiveness of NDVI data in



tracking trends and changes over consecutive 5-year intervals. Visual representations,

along with the ability to quantify vegetation changes using NDVI, offered a nuanced

perspective on the complex dynamics of vegetation loss and deforestation trends. This

investigation underscores the potential of remote sensing technologies, specifically

NDVI data from MODIS instruments, in contributing to our understanding of carbon

sinks and ecological changes over time. As we face the ongoing challenges of climate

change and the need to address carbon emissions, leveraging insights from

satellite-derived data is critical for informed environmental management strategies and

effective decision-making.



References

1. N. Kosaka and Y. Kuwata, "Monitoring of Carbon Sink Preservation Activity for

Global Warming Countermeasure using a High-Resolution Satellite Image," 2006

IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO,

USA, 2006, pp. 690-693, doi: 10.1109/IGARSS.2006.181.

2. Brown, Kim. The utility of remote sensing technology in monitoring carbon

sequestration agroforestry projects. Winrock International, 1996.

3. Potter, C., Klooster, S., Genovese, V., & Myneni, R. (2003). Satellite data help

predict terrestrial carbon sinks. Eos, Transactions American Geophysical Union,

84(46), 502-508. https://doi.org/10.1029/2003EO460003

4. González-Alonso, F., et al. "Monitoring forests as carbon sinks using remote

sensing." Proceedings of the 2004 Envisat & ERS Symposium (ESA SP-572). 6-10

September 2004, Salzburg, Austria. Edited by H. Lacoste and L. Ouwehand.

Published on CD-Rom., id. 201.1. Vol. 572. 2005.

5. Alonso, Federico & Roldan-Zamarron, Asuncion & Cuevas-Gozalo, Jose. (2006).

Assessing Forest Carbon Sinks in Spain Using Satellite Images. 1721 - 1723.

10.1109/IGARSS.2006.445.

6. Green, Kass, Dick Kempka, and Lisa Lackey. "Using remote sensing to detect and

monitor land-cover and land-use change." Photogrammetric engineering and

remote sensing 60.3 (1994): 331-337.

7. Kaul, H.A. & Ingle, Sopan. (2012). Land Use Land Cover Classification and

Change Detection Using High-Resolution Temporal Satellite Data. The Journal of

Environment. 1. 146-152.

8. Coppin, Pol & Bauer, Marvin. (1996). Digital Change Detection in Forest

Ecosystems with Remote Sensing Imagery. Remote Sensing Reviews. 13. 207-234.

10.1080/02757259609532305.

https://doi.org/10.1029/2003EO460003


9. Jianya, Gong, et al. "A review of multi-temporal remote sensing data change

detection algorithms." The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences 37.B7 (2008): 757-762.

10. S. Gopal and C. Woodcock, "Remote sensing of forest change using artificial

neural networks," in IEEE Transactions on Geoscience and Remote Sensing, vol.

34, no. 2, pp. 398-404, March 1996, doi: 10.1109/36.485117.

11. Ferchichi, Aya, et al. "Forecasting vegetation indices from spatiotemporal

remotely sensed data using deep learning-based approaches: A systematic

literature review." Ecological Informatics 68 (2022): 101552.

12. Li, Xiangqian, Wenping Yuan, and Wenjie Dong. "A machine learning method for

predicting vegetation indices in China." Remote Sensing 13.6 (2021): 1147.

13. Verbesselt, Jan, et al. "Forecasting tree mortality using change metrics derived

from MODIS satellite data." Forest Ecology and Management 258.7 (2009):

1166-1173.

14. Ozesmi, Stacy L., and Marvin E. Bauer. "Satellite remote sensing of wetlands."

Wetlands ecology and management 10 (2002): 381-402.

15. White, Lori, et al. "A collection of SAR methodologies for monitoring wetlands."

Remote sensing 7.6 (2015): 7615-7645.

16. Kaplan, Gordana, and Uğur Avdan. "Mapping and monitoring wetlands using

Sentinel-2 satellite imagery." ISPRS Annals of the photogrammetry, remote

sensing and spatial information sciences 4 (2017): 271-277.

17. Clark, Chris D. "Satellite remote sensing for marine pollution investigations."

Marine pollution bulletin 26.7 (1993): 357-368.

18. Bierman, Paul, et al. "A review of methods for analyzing spatial and temporal

patterns in coastal water quality." Ecological Indicators 11.1 (2011): 103-114.

19. Kavak, Mehmet Tahir, and Sabri Karadogan. "The relationship between sea

surface temperature and chlorophyll concentration of phytoplanktons in the



Black Sea using remote sensing techniques." Journal of environmental biology

33.2 (2012): 493.

20. Melet, Angelique, et al. "Earth observations for monitoring marine coastal

hazards and their drivers." Surveys in Geophysics 41 (2020): 1489-1534.

21. Kim, Yong Hoon, et al. "Machine learning approaches to coastal water quality

monitoring using GOCI satellite data." GIScience & Remote Sensing 51.2 (2014):

158-174.

22. Brando, Vittorio Ernesto, and Arnold G. Dekker. "Satellite hyperspectral remote

sensing for estimating estuarine and coastal water quality." IEEE Transactions on

Geoscience and remote sensing 41.6 (2003): 1378-1387.

23. Goetz, Scott, and Ralph Dubayah. "Advances in remote sensing technology and

implications for measuring and monitoring forest carbon stocks and change."

Carbon Management 2.3 (2011): 231-244.

24. Meng, Guang, et al. "The status and development proposal of carbon sources and

sinks monitoring satellite system." Carbon Neutrality 1.1 (2022): 32.

25. Saleh AK, Al-Anzi BS. Statistical Validation of MODIS-Based Sea Surface

Temperature in Shallow Semi-Enclosed Marginal Sea: A Comparison between

Direct Matchup and Triple Collocation. Water. 2021; 13(8):1078.

https://doi.org/10.3390/w13081078

26. Zeng T, Zhang Z, Zhao X, Wang X, Zuo L. Evaluation of the 2010 MODIS

Collection 5.1 Land Cover Type Product over China. Remote Sensing. 2015;

7(2):1981-2006. https://doi.org/10.3390/rs70201981

27. NASA PACE - Timeline. (n.d.). NASA PACE - Timeline.

https://pace.oceansciences.org/timeline.htm

28. NASA PACE - Data Products Table. (n.d.). NASA PACE - Data Products Table.

https://pace.oceansciences.org/data_table.htm

https://doi.org/10.3390/rs70201981
https://pace.oceansciences.org/data_table.htm


29. Laksono, Agung & Saputri, Agatha & Izumi, Bunga & Arkan, Muhammad &

Putri, Ratih. (2020). Vegetation covers change and its impact on Barchan Dune

morphology in Parangtritis Coast, Indonesia. E3S Web of Conferences. 200.

10.1051/e3sconf/202020002026.

30. Mapping the Amazon. (2019, September 26). Mapping the Amazon.

https://earthobservatory.nasa.gov/images/145649/mapping-the-amazon

31. Kaymaz, Şeyma Merve, and Ersin Ates. "Estimating chlorophyll-a concentration

using remote sensing techniques." Annals of Reviews and Research 4.2 (2018):

555633.

32. Buditama, Gilang, Astrid Damayanti, and Tjiong Giok Pin. "Identifying

distribution of chlorophyll-a concentration using Landsat 8 OLI on marine

waters area of Cirebon." IOP Conference Series: Earth and Environmental

Science. Vol. 98. No. 1. IOP Publishing, 2017.

33. Kaymaz, Şeyma Merve, and Ersin Ates. "Estimating chlorophyll-a concentration

using remote sensing techniques." Annals of Reviews and Research 4.2 (2018):

555633.

34. Buditama, Gilang, Astrid Damayanti, and Tjiong Giok Pin. "Identifying

distribution of chlorophyll-a concentration using Landsat 8 OLI on marine

waters area of Cirebon." IOP Conference Series: Earth and Environmental

Science. Vol. 98. No. 1. IOP Publishing, 2017.

35. Castagno, Andrew P., et al. "Increased sea ice melt as a driver of enhanced Arctic

phytoplankton blooming." Global Change Biology (2023).

36. Chlorophyll. (n.d.), NASA Earth Obervatory.

https://earthobservatory.nasa.gov/global-maps/MY1DMM_CHLORA

37. Carbon Cycle | Science Mission Directorate. (2023, April 25). Carbon Cycle |

Science Mission Directorate.

https://earthobservatory.nasa.gov/images/145649/mapping-the-amazon
https://earthobservatory.nasa.gov/global-maps/MY1DMM_CHLORA


https://science.nasa.gov/earth-science/oceanography/ocean-earth-system/ocean-c

arbon-cycle

38. Chelsea Harvey, E&E News on "Declining Antarctic Sea Ice Could Disrupt a

Major Carbon Sink", June 24, 2020

39. University of Southern Denmark. "Arctic sea ice helps remove carbon dioxide

from atmosphere, study shows." ScienceDaily. ScienceDaily, 22 September 2014.

www.sciencedaily.com/releases/2014/09/140922110424.htm.

40. Karen B. Roberts, Photos courtesy of Zhangxian Ouyang, “A CARBON SINK

SHRINKS IN THE ARCTIC” June 15, 2020

41. MODIS Web. (n.d.). MODIS Web.

https://modis.gsfc.nasa.gov/data/dataprod/mod29.php

View publication stats

https://science.nasa.gov/earth-science/oceanography/ocean-earth-system/ocean-carbon-cycle
https://science.nasa.gov/earth-science/oceanography/ocean-earth-system/ocean-carbon-cycle
http://www.sciencedaily.com/releases/2014/09/140922110424.htm
https://modis.gsfc.nasa.gov/data/dataprod/mod29.php
https://www.researchgate.net/publication/373337405

